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The following elaboration is based on [1], [2], [4] and [5].

1 Motivation

For some fixed θ0 ∈ R, σ2 ∈ R>0, let π denote the power function π(θ0, σ2) =

P
(

R | θ0, σ2
)

, where the event R denotes the rejection of the null hypothesis of non-

equivalence. We assume that the parameters are specified on the additive scale. The

function π = π(θ0, σ2) is the same as in equation (I) in the short cursory excerpt on

BE within inst/doc/.

This power function is conditional on the unknown (true) values θ0 and σ2. That

is, it is assumed that those parameters are given as known entities. Therefore, this

probability only reflects the probability of trial success if θ0 and σ2 are known with

absolute certainty. This assumption may however not be valid in practice. The concept

of the expected power (or assurance) aims at defining the power without conditioning on

those parameters.

2 Expected power

For some parameter of interest θ, the expected power is the (weighted) average power

over all possible values of θ. The weights are chosen according to the likelihood of an

outcome to occur. More precisely, the expected power is defined as E(π(θ)), where the

expectation is taken with respect to the probability distribution of θ. It can therefore

be seen as unconditional probability of success. In other words, the expected power

does not assume that the parameter θ is known but is estimated from a prior study

and hence is associated with some uncertainty. It therefore provides a measure to deal

with uncertainty regarding θ. Depending on the setting we can consider θ being σ2,

θ0 or (θ0, σ2) and therefore deal with uncertainty with respect to either one of these

choices.
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How should the distribution for θ be chosen? We define a prior distribution with

respect to some pilot trial from which information on the treatment effect θ0 and/or

variability σ2 may be obtained. After observing the parameter of interest, the distribu-

tion will be updated to give a posterior distribution which is then used in the definition

of the expected power (it is considered a prior distribution with respect to the trial to

be planned).

3 Application to bioequivalence trials

3.1 Uncertainty with respect to σ2

We first deal with the case where uncertainty with respect to σ2 only should be ac-

counted for. Consider the function πθ0· : R>0 → [0, 1], v 7→ π(θ0, v), where θ0 ∈ R is

some fixed value. We need to derive E
(

πθ0·(σ
2)
)

, i.e. the expected value with respect to

σ2. As prior distribution of σ2 we choose Jeffreys’ prior as in [1] and [2, Example 6.26].

Thus, given the observed information σ̂2 from the historical trial, the posterior distribu-

tion of σ2 is given by the inverse gamma distribution with shape and scale parameters
ν̂m
2 and ν̂m

2 · σ̂2, respectively, where σ̂2 and ν̂m denote the observed residual variance

and degrees of freedom from the historical trial, respectively. Note that for this case

Julious and Owen [3] provide an approximate formula for the expected power.

3.2 Uncertainty with respect to θ0

Now consider the case where uncertainty with respect to only θ0 should be dealt with.

We consider the function π·σ2 : R → [0, 1], t 7→ π(t, σ2), where σ2 ∈ R>0 is some

fixed value. In order to derive E(π·σ2(θ0)) we use Jeffreys’ prior for θ0 (with σ2 known)

which leads to the posterior distribution N(θ̂0, σ2

λ ), where λ = m
bk , m is the total sample

size of the historical trial and bk is the design specific constant (= 2 for non-replicated

trials). More generally, λ may be re-written using the standard error of the difference

of means from the historical trial: λ =
(

σ
semm

)2
(which coincides with the previous

definition for the case of no missing data and balanced groups). See for example [2,

Example 6.25 and 6.26].

3.3 Uncertainty with respect to σ2 and θ0

Finally, if uncertainty with respect to both parameters should be accounted for, con-

sider the function π·· : R × R>0 → [0, 1], (t, v) 7→ π(t, v). For the expected power

E
(

π··(θ0, σ2)
)

we use the reference prior d(θ) ∝ σ−2 for θ = (θ0, σ2) which leads to

the normal-inverse-gamma distribution with parameters µ = θ̂0, λ = m
bk (or

(

σ̂
ˆsemm

)2
),

α = ν̂m
2 , β = ν̂m

2 · σ̂2 as posterior distribution, [2, Example 6.26].
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Notes

• The distribution used in the first case (uncertainty with respect to σ2) coincides

with the conditional distribution σ2 | θ0 = θ̂0 from the joint posterior distribution

(normal-inverse-gamma) from the last case (uncertainty with respect to both σ2

and θ0).

• Similarly, in the second case the relevant distribution is the conditional distribu-

tion θ0 | σ2 = σ̂2.

• While it is often the case that the expected power value is smaller than the clas-

sical conditional power value (for fixed sample size), this is in general not true.

• Moreover, the expected power may be bounded above by a value less than 1, see

e.g. [5].

4 Implementation details

4.1 Uncertainty with respect to σ2

We need to evaluate the integral

E
(

πθ0·(σ
2)
)

=

∞
∫

0

πθ0·(v) f (v)dv =

∞
∫

0

π(θ0, v) f (v)dv,

where π is the classical conditional power function as a function in v, θ0 is some fixed

real number and f is the densitiy of the inverse gamma distribution with parameters

as described in section 3.1. The practical implementation within exppower.TOST and

exppower.noninf is performed via change of variables using the transformation v =
u

1−u so that

E
(

πθ0·(σ
2)
)

=

1
∫

0

π

(

θ0,
u

1 − u

)

f

(

u

1 − u

)

·
1

(1 − u)2
du .

The expected power is then calculated according to the right hand side using

stats::integrate with relative error tolerance of 10−5.
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4.2 Uncertainty with respect to θ0

We need to evaluate the integral

E(π·σ2(θ0)) =

∞
∫

−∞

π·σ2(t) f (t)dt =

∞
∫

−∞

π(t, σ2) f (t)dt,

where π is the classical conditional power function as a function in t, σ2 is some

fixed positive number and f is the densitiy of the normal distribution with parameters

as described in section 3.2. The practical implementation within exppower.TOST and

exppower.noninf is performed via change of variables using the transformation t =
u

1−u2 so that

E(π·σ2(θ0)) =

1
∫

−1

π

(

u

1 − u2
, σ2

)

f

(

u

1 − u2

)

·
1 + u2

(1 − u2)2
dt .

The expected power is then calculated according to the right hand side using

stats::integrate with relative error tolerance of 10−5.

4.3 Uncertainty with respect to σ2 and θ0

We need to evaluate the integral

E
(

π··(θ0, σ2)
)

=
∫

(−∞,∞)×(0,∞)

π··(t, v) f (t, v)d(t, v)

=

∞
∫

−∞

∞
∫

0

π··(t, v) f (t, v)dv dt

=

∞
∫

−∞

∞
∫

0

π(t, v) f (t, v)dv dt,

where π is the classical conditional power as a function in (t, v) and f is the den-

sity of the normal-inverse-gamma distribution with parameters as described in sec-

tion 3.3. The practical implementation within exppower.TOST and exppower.noninf is

performed via repeated change of variables using the transformation t = u
1−u2 and

v = w
1−w so that

E
(

π··(θ0, σ2)
)

=

1
∫

−1

1
∫

0

π

(

u

1 − u2
,

w

1 − w

)

f

(

u

1 − u2
,

w

1 − w

)

·

∣

∣

∣

∣

1

(1 − w)2
·

1 + u2

(1 − u2)2

∣

∣

∣

∣

dw du .
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The expected power is then calculated according to the right hand side using

cubature::hcubature with maximum tolerance of 10−4.
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