
Twitter client for R

Jeff Gentry

December 30, 2014

1 Introduction

Twitter is a popular service that allows users to broadcast short messages
(’tweets’) for others to read. Over the years this has become a valuable tool
not just for standard social media purposes but also for data mining experi-
ments such as sentiment analysis. The twitteR package is intended to provide
access to the Twitter API within R, allowing users to grab interesting subsets
of Twitter data for their analyses.

This document is not intended to be exhaustive nor comprehensive but rather
a brief introduction to some of the more common bits of functionality and some
basic examples of how they can be used. In the last section I’ve included a
variety of links to people using twitteR to solve real world problems.

2 Some Initial Notes

2.1 Support mailing list

While this package doesn’t generate a huge volume of emails to me, I have found
that the same questions tends to come up repeatedly (often when something has
been broken!). I also field requests for advice on practical application of this
package which is an area that I’m far from expert at. I’ve set up a mailing list
to better manage emails from users as this way, with the idea being that there’ll
now be a searchable archive and perhaps other users might be able to chime in.
The URL for this mailing list is http://lists.hexdump.org/listinfo.cgi/

twitter-users-hexdump.org

3 Authentication with OAuth

As of March 2013 OAuth authentication is required for all Twitter transactions.
You will need to follow these instructions to continue.

OAuth is an authentication mechanism gaining popularity which allows ap-
plications to provide client functionality to a web service without granting an
end user’s credentials to the client itself. This causes a few wrinkles for cases

1

like ours, where we’re accessing Twitter programatically. twitteR uses the httr
package under the hood to manage this.

The first step is to create a Twitter application for yourself. Go to https:

//twitter.com/apps/new and log in. After filling in the basic info, go to the
“Settings” tab and select ”Read, Write and Access direct messages”. Make sure
to click on the save button after doing this. In the “Details” tab, take note of
your consumer key and consumer secret.

In your R session, you’ll want to do the following with the appropriate values
from the web page:

> setup_twitter_oauth("API key", "API secret")

This will authenticate via httr , I recommend looking at that package’s Token
man page for more information regarding how to manage the authentication and
caching processes.

If you are in a headless environment or otherwise don’t want to deal with the
browser based authentication dance, you can get your access token and secret
from your apps webpage and call setup_twitter_oauth a bit differently:

> setup_twitter_oauth("API key", "API secret", "Access token", "Access secret")

4 Getting Started

This document is intended to demonstrate basic techniques rather than an ex-
haustive tour of the functionality. For more in depth examples I recommend
exploring the mailing list or StackOverflow. I’ve also included some links to
examples of twitteR being used in the real word at the end.

> library(twitteR)

> setup_twitter_oauth("API key", "API secret")

5 Exploring Twitter

5.1 Searching Twitter

The searchTwitter function can be used to search for tweets that match a
desired term. Example searches are such things as hashtags, basic boolean logic
such as AND and OR. It is worth looking at https://dev.twitter.com/docs/
using-search for an example of what can and can not be done here. The n

argument can be used to specify the number of tweets to return, defaulting to
25. Note that while searchTwitter will wrap an arbitrary number of actual
search calls to provide the number of tweets requested, the Twitter API has
limitations on just how much it will actually return. In general you can only go
back a handful of days worth of tweets.

2

> tweets = searchTwitter('#rstats', n=50)

> head(tweets)

[[1]]

[1] "hadleywickham: RT @quominus: Scraping the IETF with rvest: http://t.co/KVFMOo1JYR #rstats #rvest"

[[2]]

[1] "hughparsonage: RT @sharon000: \"Most likely, R became the top statistics package used during summer of this year\" - @bobmuenchen in Nature http://t.co/FGFâĂ
↪
e"

[[3]]

[1] "liketree36: RT @moorejh: #rstats vs #Python Round 3 - http://t.co/q1CZhfgJT9 via @sjmgarnier & @randal_olson #datascience"

[[4]]

[1] "liketree36: RT @moorejh: #rstats vs #Python Round 2 - http://t.co/IZGfwrfwtk via @sjmgarnier & @randal_olson #datascience"

[[5]]

[1] "liketree36: RT @moorejh: #rstats vs #Python Round 1 - http://t.co/CkfIzvRifY via @sjmgarnier & @randal_olson #datascience"

[[6]]

[1] "JonathanAFrye: RT @sharon000: \"Most likely, R became the top statistics package used during summer of this year\" - @bobmuenchen in Nature http://t.co/FGFâĂ
↪
e"

There’s a handy utility method, strip_retweets which attempts to do ex-
actly what it describes. It takes a list of status objects (e.g. from searchTwit-

ter) and by default will remove official API-based retweets from Twitter, i.e.
cases where the retweet button was pressed instead of the manual RT @soandso
.... method. However there are two arguments, strip_manual and strip_mt,
corresponding to the manual retweets described above and modified retweets
(MT). If either of these are TRUE, the appropriate type of tweets will also be
removed, but leaving everything to the left of the RT/MT.

Note that this example may or may not do anything depending on the data
available when this vignette was compiled.

> head(strip_retweets(tweets, strip_manual=TRUE, strip_mt=TRUE))

[[1]]

[1] "JBYoder: Vectorize!\nLet no for() loops evade your eyes!\nRemember why #R gave you all of those apply()s, and\nVectorize!\nVectorize!\nVectorize!\n#Rstats"

[[2]]

[1] "ayeimanol: \"ItâĂŹs not just the confidence and drive to act. ItâĂŹs having engraved inner criteria to guide action.\" #rstats @myen http://t.co/rV89ORMvVm"

[[3]]

[1] "Rbloggers: Plot with ggplot2 and plotly within knitr reports http://t.co/Xisq4jAkUZ #rstats"

[[4]]

[1] "ayeimanol: \"SAS is #1âĂ
↪
eIn Plans to Discontinue Use\" #rstats @myen http://t.co/5uWMNow8Js"

[[5]]

3

[1] "LearnRinaDay: SAS is #1âĂ
↪
eIn Plans to Discontinue Use: http://t.co/1KafbigJeO\n#SAS #programming #computing #rstats #BigData #OpenSource"

[[6]]

[1] "daroczig: Only 5 days left to submit your tutorial proposal for @user2015aalborg at #user2015. I'd like to talk about how to use markdown in #rstats."

5.2 Looking at users

To take a closer look at a Twitter user (including yourself!), run the command
getUser. This will only work correctly with users who have their profiles public,
or if you’re authenticated and granted access. You can also see things such as
a user’s followers, who they follow, retweets, and more. The getUser function
returns a user object, which can then be polled for further information.

> crantastic = getUser('crantastic')
> crantastic$getDescription()

[1] "I like some things, and I dislike everything else."

> crantastic$getFollowersCount()

[1] 30

> crantastic$getFriends(n=5)

$`2657140026`
[1] "SilasUniversity"

$`2319087912`
[1] "HeyCarmilla"

$`2797069390`
[1] "Elise3aum"

$`132345262`
[1] "natvanlis"

$`2612008842`
[1] "Laura2theLetter"

> crantastic$getFavorites(n=5)

[[1]]

[1] "ohnikkers: @keithkurson naw they did two shows in london and i went to both. i made hannah fall in love with the scottish accent tho so NEXT TIME"

[[2]]

[1] "mrcartaire: @karmytho Absolutely not. Amy is definitely not straight."

[[3]]

4

[1] "mrcartaire: @saraGG14 @thekatiestevens @greggsulkin @therealritavolk Amy definitely isn't. Karma is straightâĂ
↪
e for now."

[[4]]

[1] "AnnaKendrick47: Guys I won't be able to see the fireworks from where I am today. Can someone please post them to Instagram for me? #ItWillBeLikeIWasThere"

[[5]]

[1] "SmashKarenC: Don't get me wrong, I think it's great that Ivy sleeps with her directors and gets all nude onstage but that's just not me. I'm from Iowa."

5.3 Conversion to data.frames

There are times when it is convenient to display the object lists as an data.frame

structure. To do this, every class has a reference method toDataFrame as well as
a corresponding S4 method as.data.frame that works in the traditional sense.
Converting a single object will typically not be particularly useful by itself but
there is a convenience method to convert an entire list, twListToDF which takes
a list of objects from a single twitteR class:

> df = twListToDF(tweets)

> head(df)

text

1 RT @quominus: Scraping the IETF with rvest: http://t.co/KVFMOo1JYR #rstats #rvest

2 RT @sharon000: "Most likely, R became the top statistics package used during summer of this year" - @bobmuenchen in Nature http://t.co/FGFâĂ
↪
e

3 RT @moorejh: #rstats vs #Python Round 3 - http://t.co/q1CZhfgJT9 via @sjmgarnier & @randal_olson #datascience

4 RT @moorejh: #rstats vs #Python Round 2 - http://t.co/IZGfwrfwtk via @sjmgarnier & @randal_olson #datascience

5 RT @moorejh: #rstats vs #Python Round 1 - http://t.co/CkfIzvRifY via @sjmgarnier & @randal_olson #datascience

6 RT @sharon000: "Most likely, R became the top statistics package used during summer of this year" - @bobmuenchen in Nature http://t.co/FGFâĂ
↪
e

favorited favoriteCount replyToSN created truncated replyToSID

1 FALSE 0 <NA> 2014-12-30 23:33:44 FALSE NA

2 FALSE 0 <NA> 2014-12-30 23:30:35 FALSE NA

3 FALSE 0 <NA> 2014-12-30 23:30:34 FALSE NA

4 FALSE 0 <NA> 2014-12-30 23:30:32 FALSE NA

5 FALSE 0 <NA> 2014-12-30 23:30:30 FALSE NA

6 FALSE 0 <NA> 2014-12-30 23:27:56 FALSE NA

id replyToUID

1 550072274947043328 <NA>

2 550071480587800576 <NA>

3 550071478142529536 <NA>

4 550071468344635392 <NA>

5 550071459284918272 <NA>

6 550070814239121409 <NA>

statusSource

1 Echofon

2 Twitter for iPhone

3 Twitter for iPhone

4 Twitter for iPhone

5

5 Twitter for iPhone

6 TweetDeck

screenName retweetCount isRetweet retweeted longitude latitude

1 hadleywickham 1 TRUE FALSE NA NA

2 hughparsonage 17 TRUE FALSE NA NA

3 liketree36 8 TRUE FALSE NA NA

4 liketree36 5 TRUE FALSE NA NA

5 liketree36 6 TRUE FALSE NA NA

6 JonathanAFrye 17 TRUE FALSE NA NA

5.4 Database Persistence

A question that I’m often asked is how to retrieve data from the past, generally
people are doing a study on some major event that has already happened (e.g.
Arab Spring, an election, etc). Using the Twitter API this is impossible as
you can only go back a small amount. However, if you have the ability to
look ahead, it is easy to enable a prospective study by collecting data and
automatically persisting it to a database. This will then allow you to load
everything into a later R session, including using tools such as dplyr . There’s a
full writeup of this functionality at http://geoffjentry.blogspot.com/2014/
02/twitter-now-supports-database.html.

Here’s a brief example:

> sql_lite_file = tempfile()

> register_sqlite_backend(sql_lite_file)

> store_tweets_db(tweets)

[1] TRUE

> from_db = load_tweets_db()

> head(from_db)

[[1]]

[1] "hadleywickham: RT @quominus: Scraping the IETF with rvest: http://t.co/KVFMOo1JYR #rstats #rvest"

[[2]]

[1] "hughparsonage: RT @sharon000: \"Most likely, R became the top statistics package used during summer of this year\" - @bobmuenchen in Nature http://t.co/FGFâĂ
↪
e"

[[3]]

[1] "liketree36: RT @moorejh: #rstats vs #Python Round 3 - http://t.co/q1CZhfgJT9 via @sjmgarnier & @randal_olson #datascience"

[[4]]

[1] "liketree36: RT @moorejh: #rstats vs #Python Round 2 - http://t.co/IZGfwrfwtk via @sjmgarnier & @randal_olson #datascience"

[[5]]

[1] "liketree36: RT @moorejh: #rstats vs #Python Round 1 - http://t.co/CkfIzvRifY via @sjmgarnier & @randal_olson #datascience"

6

[[6]]

[1] "JonathanAFrye: RT @sharon000: \"Most likely, R became the top statistics package used during summer of this year\" - @bobmuenchen in Nature http://t.co/FGFâĂ
↪
e"

5.5 Timelines

A Twitter timeline is simply a stream of tweets. We support two timelines,
the user timeline and the home timeline. The former provides the most recent
tweets of a specified user while the latter is used to display your own most recent
tweets. These both return a list of status objects.

To look at a particular user’s timeline that user must either have a public
account or you must have access to their account. You can either pass in the
user’s name or an object of class user (more on this later). For this example,
let’s use the user cranatic.

> cran_tweets = userTimeline('cranatic')
> cran_tweets[1:5]

[[1]]

[1] "cranatic: Update: Bchron, BoolNet, caribou, CePa, fmri, HTSCluster, isa2, lessR, lgcp, spatstat. http://t.co/skyrajMA #rstats"

[[2]]

[1] "cranatic: New: extrafont, extrafontdb, Rttf2pt1, x12GUI. http://t.co/skyrajMA #rstats"

[[3]]

[1] "cranatic: Update: drc, RcmdrPlugin.survival, rrcov, spls. http://t.co/eEoXNifB #rstats"

[[4]]

[1] "cranatic: New: hzar. http://t.co/eEoXNifB #rstats"

[[5]]

[1] "cranatic: Update: directlabels, forensim, gdata, gWidgetstcltk, gWidgetsWWW, harvestr, rrlda, Rz, Sim.DiffProc, ... http://t.co/9JEe7K91 #rstats"

By default this command returns the 20 most recent tweet. As with most
(but not all) of the functions, it also provides a mechanism to retrieve an arbi-
trarily large number of tweets up to limits set by the Twitter API, which vary
based on the specific type of request.

> cran_tweets_large = userTimeline('cranatic', n=100)

> length(cran_tweets_large)

[1] 100

The homeTimeline function works nearly identically except you do not pass
in a user, it uses your own timeline.

7

5.6 Trends

Twitter keeps track of topics that are popular at any given point of time, and
allows one to extract that data. The getTrends function is used to pull current
trend information from a given location, which is specified using a WOEID (see
http://developer.yahoo.com/geo/geoplanet/). Luckily there are two other
functions to help you identify WOEIDs that you might be interested in. The
availableTrendLocations function will return a data.frame with a location
in each row and the woeid giving that location’s WOEID. Similarly the clos-

estTrendLocations function is passed a latitude and longitude and will return
the same style data.frame.

> avail_trends = availableTrendLocations()

> head(avail_trends)

name country woeid

1 Worldwide 1

2 Winnipeg Canada 2972

3 Ottawa Canada 3369

4 Quebec Canada 3444

5 Montreal Canada 3534

6 Toronto Canada 4118

> close_trends = closestTrendLocations(-42.8, -71.1)

> head(close_trends)

name country woeid

1 Concepcion Chile 349860

> trends = getTrends(2367105)

> head(trends)

name url

1 #SubscribeToTylerOakley http://twitter.com/search?q=%23SubscribeToTylerOakley

2 New Years http://twitter.com/search?q=%22New+Years%22

3 #GoIrish http://twitter.com/search?q=%23GoIrish

4 Notre Dame http://twitter.com/search?q=%22Notre+Dame%22

5 Walmart http://twitter.com/search?q=Walmart

6 #LeelahAlcorn http://twitter.com/search?q=%23LeelahAlcorn

query woeid

1 %23SubscribeToTylerOakley 2367105

2 %22New+Years%22 2367105

3 %23GoIrish 2367105

4 %22Notre+Dame%22 2367105

5 Walmart 2367105

6 %23LeelahAlcorn 2367105

8

5.7 A simple example

Just a quick example of how one can interact with actual data. Here we will
pull the most recent results from the public timeline and see the clients that
were used to post those statuses. We can look at a plot of the most common
clients, as well as seeing hos many others were used.

Note that sources which are not the standard web interface will be presented
as an anchored URL string (<A>...). There are more efficient means to
rip out the anchor string than how it is done below, but this is a bit more robust
for the purposes of this vignette due to issues with character encoding, locales,
etc.

> library(ggplot2)

> r_tweets <- searchTwitter("#rstats", n=300)

> sources <- sapply(r_tweets, function(x) x$getStatusSource())

> sources <- gsub("", "", sources)

> sources <- strsplit(sources, ">")

> sources <- sapply(sources, function(x) ifelse(length(x) > 1, x[2], x[1]))

> source_table = table(sources)

> filtered_sources = names(source_table[source_table < quantile(source_table, 0.9)])

> sources[sources %in% filtered_sources] = "other"

> source_df = as.data.frame(sources)

> ggplot(source_df, aes(sources)) + geom_bar() + coord_flip()

other

TweetDeck

Twitter for Android

Twitter for iPhone

Twitter Web Client

0 25 50 75 100
count

so
ur

ce
s

9

6 Examples Of twitteR In The Wild

I’ve found some examples around the web of people using this package for various
purposes, hopefully some of these can give you good ideas on how to do things.
Unfortunately I didn’t give the package the most easily searched name! If you
know of a good example please let me know.

NB: Many of these predate the changes to using the httr package, so specifics
might have changed, rather view these as examples of things you could do.

• Jeffrey Stanton’s free book on data science discusses twitteR: http://

ischool.syr.edu/media/documents/2012/3/DataScienceBook1_1.pdf

• Rare bird siting twitter bot: https://twitter.com/crd_rare_bird

• Jeffrey Breen’s sentiment analysis example: http://www.inside-r.org/
howto/mining-twitter-airline-consumer-sentiment

• Mapping your followers: http://simplystatistics.org/2011/12/21/

an-r-function-to-map-your-twitter-followers/

• Yangchao Zhao’s book on data mining w/ R http://www.amazon.com/

Data-Mining-Examples-Case-Studies/dp/0123969638

• Gary Miner et al’s book on data mining http://www.amazon.com/Practical-Statistical-Analysis-Non-structured-Applications/
dp/012386979X

• Mining Twitter with R https://sites.google.com/site/miningtwitter/

home

• Organization or conversation in Twitter: A case study of chatterboxing
https://www.asis.org/asist2012/proceedings/Submissions/185.pdf

7 Session Information

The version number of R and packages loaded for generating the vignette were:

R version 3.1.2 (2014-10-31)

Platform: x86_64-apple-darwin13.4.0 (64-bit)

locale:

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] ggplot2_1.0.0 RSQLite_1.0.0 DBI_0.3.1 twitteR_1.1.8

10

loaded via a namespace (and not attached):

[1] bit_1.1-12 bit64_0.9-4 bitops_1.0-6 colorspace_1.2-4

[5] digest_0.6.6 grid_3.1.2 gtable_0.1.2 httr_0.6.0

[9] labeling_0.3 MASS_7.3-35 munsell_0.4.2 plyr_1.8.1

[13] proto_0.3-10 R6_2.0.1 Rcpp_0.11.3 RCurl_1.95-4.5

[17] reshape2_1.4.1 rjson_0.2.15 scales_0.2.4 stringr_0.6.2

[21] tools_3.1.2

11

