Optimization for Maximum-Likelihood Estimation in kergp

Yves Deville*

March 17, 2021

This reportE] is devoted to the use of numerical optimization for Maximum Likelihood Esti-
mation in the kergp package. It gives some indications on the packages and functions used for
optimization. Is also explains how the optimization can be tuned.

1 GP models and "gp" objects
1.1 GP models

The package kergp is dedicated to Gaussian Processes (GP) regression models; These relate a
continuous response variable Y to a vector x of d inputs, usually assumed to be in a domain X
of the Euclidean d-dimensional space R%. A model corresponds to partial observations having
the form

yl:f(xl) B+C(XZ)+) Z:L sy (1)
—_— =~ =~
trend GP noise

where the three terms at right-hand side are as follows.

e Trend. The trend function f(x) is vector-valued, and 3 is a vector of p trend parameters.

e GP. ((x) is an unobserved smooth GPE] with mean zero and with its covariance kernel
K(x, x'; 8) depending on a vector 6 of covariance parameters;

e Noise. The n r.vs g; are assumed to be i.i.d., normal, centered, and to have a common
variance 2. These noise r.vs are assumed to be independent of the GP ((x).

Matrix notations are convenient for (I). Let X be the n x d input (or design) matrix with the
transposed input vectors x; as it rows, and let F be the n x p matrix with rows f(x;)". Then

i
writes as
y=FG8+(+e. (2)

The notation K(X;) or simply K(X) will be used for the nxn covariance matrix [K(x;, x;; 0)]; ;.

1.2 gp objects
Class and creator

A GP model as described above will be represented by an object with S3 class "gp", which will
be created by using the gp “creator” function. Figure [1| shows a call which is nearly minimal
— the argument noise still could have been omitted.

*deville.yves@alpestat.com
!Compiled with R 4.0.4 using kergp 0.5.5.
2With continuous paths.

yi =f(x:)'B + ((x) + &

gp(formula = y ~ £f1 + £2,| data = myData,
cov = myCov
noise = TRUE)

Figure 1: Terms in the model and formal arguments of gp in a (minimal) illustrative call.

The classical situation is when all parameters 3, @ and ag are unknown and must be esti-
mated from the n observations y;, which is done in the creation step. For now, kergp favours
Maximum Likelihood (ML) estimation. Note that the first and the third terms at the right hand
side of can be removed from the model by using a suitable choice of the formal arguments
of gp, see below. However the GP term must exist.

For illustration we will use a deterministic function to generate the “true” response and add
a noise term with rather small variance, see Figure

library(kergp)

n <- 100

x <- seq(from = 0.0, to = 1.0, length.out = n)
set.seed(123)

y <~ 1 + sin(2.0 * pi * x) + rnorm(n, sd = 0.2)
myData <- data.frame(x = x, y = y)

In order to define a gp we first need a parameterized kernel.

The cov formal: a parameterized kernel object

Remind that kergp puts much emphasis on kernel objects which are used to define centered
GPs as ((x) in . This argument is used to pass a covariance kernel object inheriting from
the "covAll" class e.g., an object in one of the classes "covMan" and "covRadial".

The covariance kernel object embeds a specific value for the vector 6 of covariance parame-
ters; This value can be extracted by using the coef method and it can be changed by using the
coef<- replacement method. It also contains bounds on the parameters, that can be extracted
with coefLower and coefUpper and can be set by using coefLower<- and coefUpper<-. The
bounds often play a major role in the estimation.

myCov <- kMatern(nu = "3/2")

inputNames (myCov) <- "x"
coef (myCov)

theta_l sigma2
1 1

coef (myCov) <- c(1, 4)

The kernel object can be used in gp.

myGp <- gp(y ~ 1, data = myData, cov = myCov)

coef (myGp)
(Intercept) theta_1 sigma?2 varNoise
0.9781 0.3576 0.5749 0.0328

The predict method of the "gp" class can then be used to obtain the elements shown on
Figure [2[(code not shown here).

2.0-

true

=== mean

= trend
0.5-

0.0-

Figure 2: Simple example data and prediction from the gp object. The ribbon in gray shows
the 95% confidence interval for the regression mean.

Trend and noise

The trend is coped with by using the classical formula-data interface, as in 1m and in many other
statistical modelling functions in R, see Figure [Il A model with no trend can be obtained by
using a formula with right-hand side ~ 1 and by setting then the value of the trend parameter
3 to the scalar value zero by using the optional argument beta according to beta = 0.

Remark 1. The trend variables do not really need to be functions of the input vector x and
covariates can be used classically.

The logical argument noise can be used to fit a model with no noise, in which case no
duplicated value should exist among the input vectors x;.

What is a gp?

Since "gp" is a S3 class, it does not have a formal representation. A gp object is a list with
elements containing the results of the estimation as well as some intermediate results useful for
prediction. This choice was made to allow changes in the structure of the class, which still may
evolve in the future. So you can extract some elements of the list for your needs, but we do not
warrant that the list will remain exactly the same in future versions.

names (myGp)

[1] "call" "terms" "inputNames" "dim"

[5] nyn nxn "F" "L"

[9] "betaHat" "eStar" "FStar" "sseStar"
[13] "RStar" "covariance" "noise" "varNoise"
[17] "trendKnown" "optValue" "MLE" "logLik"
names (myGp$MLE)

[1] "logLik" "parIni" "opt" "cov"

[5] "noise" "varNoise" "trendKnown" "trendRes"

[9] "parTracked" "logLikFun" '"report"

names (myGpMLEopt)

[1] "xO" "eval _f"

[3] "lower_bounds" "upper_bounds"
[5] "num_constraints_ineq" "eval_g_ineq"
[7] "num_constraints_eq" "eval_g_eq"

[9] "options" "local_options"
[11] "nloptr_environment" "call"

[13] "termination_conditions" "status"

[15] "message" "iterations"
[17] "objective" "solution"

[19] "version" "num.evals"

[21] "ii" "par"

[23] "value" "convergence"

An element of the gp list can be a list and even be a list of lists. Here myGpMLEopt is essentially
a copy of the result returned by the optimization function. Remind that the content of the list
depends on the call. For instance with estim = FALSE the element MLE of the list would be
NULL. By changing the optimization function, the content of myGpMLEopt would be changed
because the two allowed optimization functions return quite different list objects.

Remark 2. The names of the variables in the code of the package: X, F, beta, ... are closely
related to the matrices X, F, 3, ... used in the matrix notation .

1.3 Optimize, or not

The creator function gp relates 3 to beta, and the noise variance o2 relates to varNoise.
Depending on whether the parameters are known or not, gp will be used differently and will
invoke a different method?} see Figure

myGpNoEst <- gp(y ~ 1, data = myData, cov = myCov, estim = FALSE,
varNoise = TRUE)

coef (myGpNoEst)

H# (Intercept) theta_1 sigma2 varNoise
#i 1.079 1.000 4.000 1.000
myGpNoEst$MLE

NULL

We see that the trend parameter 3 was estimated, but that neither the covariance parameter
0 nor the noise variance o2 were estimated. When a noise term exists, it will be convenient
to consider @ and o2 as a single vector of non-trend parameters 1 := [0, 02]. When no noise
term is found in the model, we consistently set 1) := 6. The gp creator will work differently

depending on what has to be estimated.

e Known trend B and known non-trend v. Use estim = FALSE, and give a suitable vector
of trend coefficients in the formal argument beta. In this case, the creator function gp
will call the gls method, which will simply compute auxiliary matrices and vectors useful
for prediction.

Formal args passed to gp with the dots ellipsis ... will be passed to the gls method.

e Know trend 3, unknown non-trend 1. Give the beta formal argument. Then) will be
estimated by ML and gp will call the mle method.

Formal args passed to gp with the dots ellipsis ... will be passed to the mle method.

3In the R terminology meaning.

1 known 1 unknown

estim = FALSE, estim = TRUE,
B3 known | beta = a numeric, beta = a numeric,
gls T mle
estim = FALSE, estim = TRUE,
B unknown
gls T mle

Figure 3: Depending on whether the trend parameter 3 and the non-trend parameter v =
[0, 2] are known or not, gp will call the gls or the mle method indicated in red in the right
lower corner of the relevant box. The formals in the dots ellipsis are passed to this method.

o Unknown trend B and known non-trend ¢. Use estim = FALSE. Then the ML estimation
can be achieved by Generalized Least Squares (GLS). In this case, gp will call the gls
method to estimate (3.

Formal args passed to gp with the dots ellipsis ... will be passed to the gls method.

o Unknown trend B and unknown non-trend 1. The creator function gp will call the mle
method.

Formal args passed to gp with the dots ellipsis ... will be passed to the mle method.

So remind that in the manual of the package, the help about optimization will not be found
in the page dedicated to gp, but rather in that of the gls or mle methods, which are S4. The
first argument of these methods is a (S4) kernel object like that given by the cov formal of gp.
This structure potentially allows the use of an estimation method which takes into account the
specific features of the kernel, see section [4.2

1.4 What to optimize?
The log-likelihood

A numerical optimization is really required only when gp is called with estim = TRUE. The ML
estimate of the vector of parameters is obtained as the argument of a log-likelihood function
which is maximized, usually a profile log-likelihood.
In the most general form, the log-likelihood function ¢ := log L of the model has the
form
(B, 0,02 X, y).

Its evaluation requires the evaluation of the covariance matrix K(X; 6) and its Cholesky de-
composition at a cost of O(n?). We will now on omit the dependence of £ on the input matrix
X and the response vector y.

Profile log-likelihood

Given a covariance parameter 8 and a noise variance o2, finding the value of 3 which maximizes
the log-likelihood / i.e., R
B0, 0?) := arg mx ((3, 6. o?)

is easily achieved by GLS. Indeed, is nothing but a linear regression with correlated errors.
Hence the ML estimation boils down to the maximization of so-called profile (or concentrated)
log-likelihood R

ﬁpr(a, U?) = é[ﬁ(ev O-g)a 0, O‘?] (3)

which depends only on the vector ¥ = [0, 0] of non-trend parameters formed by the covariance
parameter 6 and the noise variance o2. The profile log-likelihood is easier to maximize than
the original log-likelihood. Still, each evaluation of £, involves computing the matrix K(X; 0)

hence is costly.

No noise
When the model has no noise, the profile log-likelihood function that is maximized depends
only of the covariance parameter @, so in this case ¢» = 6.

Remark 3. If the chosen kernel is very smootPE] the optimization can be difficult, because the
K (X) may fail to be numerically definite positive.

Given trend vector 3

When the trend vector 3 is given, the log-likelihood to be optimized no-longer depends on 3:
It corresponds to a “slice” of the log-likelihood

l4(0, 02) := (8, 0, 0?) (4)

for the case where a noise is used. More generally, the slice likelihood function to be maximized
depends on the vector v of the non-trend parameters.

Gradient

The gradient of the optimized functionE] can be evaluated by chain rule using the gradient of
the covariance matrix 0K /90, provided that the later is available. For the sake of efficiency, a
single R function should be used to evaluate both the value ¢, and that of the gradient 94y, /0.
Indeed, a number of intermediate variables such as K and its Cholesky decomposition are used
for both evaluations.

When this is possible, using the gradient makes the optimization much faster: a smaller
number of evaluations of /5, is required.

1.5 How to optimize?

Initial values

As is often the case for ML estimation, we use local optimization methods as default. For some
specific kernels and data, you might have an idea of initial values for @ and o2, and provide
these the parCovIni and varNoiseIni.

4Say C? or more.
*Namely 94, /v or 0y /0 depending on whether B is known or not.

Bounds on parameters

The optimization methods should preferably accept bounds on the parameters vy,

Yk < Yp < Yuk (5)

where 91, can be —oo i.e., -Inf and 9y can be oo i.e., Inf. These bounds can be set by
using the formal arguments of the mle method for the "covAll" class. They can be passed to
mle from gp by the dots ellipsis.

e The bounds on the covariance parameters can be given by the parCovLower and parCovUpper
arguments. The default bounds are given by coefLower (cov) and coefUpper (cov) and
they can be set by using the replacement methods coefLower<- and coefUpper<- before
calling gp or mle.

2

Z are set by using varNoiseLower and varNoiseUpper

e The bounds on the noise variance o
arguments.

With the default optimization methods, it is possible to give identical lower and upper
bounds corresponding to 1, = 9y in (5], thus providing a convenient way to fix the value

Of@bk.

myGpConstr <- gp(y ~ 1, data = myData, cov = myCov,
compGrad = TRUE,
parCovLower = c(1.0, 0.01), parCovUpper = c(1.0, 100.0),
trace = 1)

optimFun : nloptr: :nloptr
optimMethod : NLOPT_LD_LBFGS

Warning in nloptr.add.default.options(opts.user = opts, x0 = x0, num constraints_ineq = num_constraints_ineq,
No termination criterium specified, using default (relative x-tolerance = 1le-04)

#i#

Optimisation report:

##

parIni.theta_1 parIni.sigma2 parlIni.varNoise par.theta_1
1 1 4 0.05219 1
par.sigma2 par.varNoise logLik nIter convergence

1 6.553 0.03299 9.208 17 TRUE

Warning in .local(object, ...): optimisation did not converge
coef (myGpConstr)

(Intercept) theta_1 sigma?2 varNoise

#i# 0.88132 1.00000 6.55303 0.03299

So here the range parameter of the kernel has a fixed value 1.0. Similarly, we could have set
the value of the noise variance o2, still optimizing on the covariance parameter 6.

Multistart

As far as a general covariance kernel is used, no general rule seems to exist for providing good
initial values. So trying several initial values is an option.

The multistart formal argument of the mle method can be used to set a number of initial
parameter vectors ¥ to be tried in optimization. When these values are not found as expected

in parCovIni, they are drawn randomly in the hyper-cube defined by the constraints by using
the simulPar function. Then the vector 1 of estimated parameters is the one for which the
optimization resulted in the largest maximized log-likelihood. The optimizations can be run in
parallel e.g., by using the doFuture package (Bengtsson, H., 2017)).

Remark 4. For now, the parallel execution works only when optimFun = nloptr::nloptr.

2 Tuning optimization

2.1 Different levels of tuning
Function and method (or algorithm)

In the mle method of kergp, two standard optimization functions can be used: "nloptr: :nloptr"
— which now is the default —and "stats: :optim". The nloptr package Ypma J. (2014)) provides
an interface to the famous NLopt library (Johnson, S.G., 2017). The choice of the optimiza-
tion function is done by using the formal argument optimFun, for which partial matching is
allowed. Both functions allow several choices of the optimization method (or algorithm) via its
own syntax; The optimMethod argument of mle can be used for both functions.

For the default optimization function, we have selected two optimization algorithms: The
choice among these is given by the value of the logical compGrad which tells if the gradient is used
or not. When optimFun is set to "stats: :optim" the default is optimMethod = "L-BFGS-B",
although this implementation does not accept NAs.

Three levels of tuning

The kergp package has the following possibilities which will be detailed.

1. Still using one of the optimization functions and one of its default or recommended meth-
ods (or algorithms), achieve a light tuning e.g., in order to change the maximal number
of evaluations of the objective.

You only need to play with the two formals optimFun and optimMethod to choose the function
and the method, and then pass a list of options via the arguments opts or control, depending

on the value of optimFun.

2. Still using one of the two optimization functions, access to another optimization method,
and tune its parameters.
You will have to carefully read the documentation of the nloptr: :nloptr or of the stats: :optim
function, and possibly some related links.

3. Use another optimization function e.g., coming from an extra package.

You will have to understand some features of the code of the mle method in order to choose the
name of the suitable objective function and of the formal arguments of the optimization function

that you want to use.

Function: nloptr::nloptr vs stats::optim

The function nloptr: :nloptr has a very wide choice of optimization methodsﬂ that can nor-
mally be acceded to by using the opts formal, a named list. The same formal opts contains

6> 20 methods.

optimFun = nloptr::nloptr

nloptr: :nloptr(nloptr::nloptr(
x0 = parlIni, x0 = parlni,
eval_f = neglLogLikFun, eval_f = neglogLikFun,
1b = parLower, 1b = parLower,
ub = parUpper, ub = parUpper,
opts = list("algorithm" = "NLOPT_LD_LBFGS"), opts = list("algorithm" = "NLOPT_LN_COBYLA"),
) L))

Figure 4: Default settings for the case optimFun = nloptr::nloptr. The codes show the
call to nloptr: :nloptr from the mle method for the "covAll" class, depending on the value
of comppGrad. The objects such as parLower have been defined within the method, before the
call. Note that nloptr: :nloptr always minimizes, so the negative of the log-likelihood is used.

elements to tune the optimization: for instance, the maximal number of evaluations of the
objective is controlled via the maxeval element.

The stats: :optim function has a smaller number of methodsﬂ The choice is normally made
by using the method formal, while the parameters controlling the optimization are given in the
control formal, a named list. For instance, the maximal number of iterations is controlled via
the maxit element.

Both for stats: :optim and nloptr: :nloptr, there exist pre-defined values corresponding
to the cases where opts and control are not given to the optimization function. These are
used by default by the mle method. The pre-defined stopping rules of nloptr: :nloptr differ
from that of stats::optim.

Most often, box constraints on parameters should be used. For instance, range or variance
parameters must be > 0.

2.2 Using nloptr optimFun = "nloptr::nloptr"
Default settings

The call to the optimization function from the mle method is shown on figure [d] Depending on
whether the gradient is available, a different “standard” algorithm is chosen. Inasmuch as you
still want to use the standard algorithm which is compliant with the value of compGrad, you
will change the value of some elements of the list opts, but not that of the algorithm element,
because this will anyway be set to the value of optimMethod.

Light tuning with opts

To change the default settings for the current algorithm, you can pass a list object in the opts
formal argument, used via the dots mechanism. Of course, only values differing from the default
in opts will have an effect. The list of the options that can be tuned is given by the function
nloptr::nl.opts

76 methods

library(nloptr)
names (nl.opts())

[1] "stopval" "xtol_rel"
[3] "maxeval" "ftol_rel"
[5] "ftol_abs" "check_derivatives"

[7] "algorithm"

Remark 5. As far as we are optimizing a log-likelihood function which is defined up to an
additive constant, it does not really make sense to use ftol_rel. Setting ftol_abs = 1e-3
seems a sensible choice.

Remark 6. No control is done by nloptr: :nloptr to check the name of the elements of the opts
list. For instance passing opts = list("foo" = "bar") will not warn, but do nothing. This
can be misleading when there is a typo in the name of the option, as in opts = list("maxEval"
= 1000).

An example of use of opts is as follows.

myGpTunedl <- gp(y ~ 1, data = myData, cov = myCov,
opts = list("maxeval" = 5, "print_level" = 2))

iteration: 1

f(x) = -4.615403

iteration: 2

f(x) = 255798.106315
iteration: 3

f(x) = 3.022986

iteration: 4

f(x) = -8.605493

iteration: 5

f(x) = -8.606547

coef (myGpTuned1)
(Intercept) theta_1 sigma?2 varNoise
0.95727 0.99899 4.00007 0.03383

The effect of opts is quite clear: the optimization stops as soon as maxeval evaluations of the
function have been done, and some information is printed at each evaluation.

Change the algorithm with optimMethod

With some care, you can change as well the value of the algorithm used by nloptr: :nloptr,
using the optimMethod argument of gp and giving one of the following accepted values.

om <- optimMethods(optimFun = "nloptr")

head (om)

optimFun optimMethod globLoc
1 nloptr::nloptr NLOPT_GN_DIRECT G
2 nloptr::nloptr NLOPT_GN_DIRECT_L G
3 nloptr::nloptr NLOPT_GN_DIRECT_L_RAND G
4 nloptr::nloptr NLOPT_GN_DIRECT_NOSCAL G
5 nloptr::nloptr NLOPT_GN_DIRECT_L_NOSCAL G
6 nloptr::nloptr NLOPT_GN_DIRECT_L_RAND_NOSCAL G
derNo

10

##
##
#it
##
#it
#i#

o O W N
=2=2=2=22 =2

nrow (om)
[1] 38
The list of algorithms could as well have been obtained with

nloptr.print.options("algorithm")

As suggested by the output message (not shown here), the detailed information on the available
algorithms is to be found on the NLopt website, because NLopt is not specifically intended to
be used with R.

In the names of the algorithms available with nloptr: :nloptr, the second two-letter word
GN tells if the algorithm is Global (G) of local (L) and if it needs a gradient (or derivative D) or not
(N). So the four possible values are GN, LN, GD and GN. Remind that when an algorithm requires
a gradient, the objective function neglogLikFun must return a list with the two elements
"objective" and "gradient", which will be the case only if compGrad = TRUE is used. Using
a value of compGrad which is not compliant with the algorithm may lead to an error message

which is difficult to understand.
As an illustration, we can choose a Nelder-Mead “simplex” LN method, a Local method Not
using a gradient.

myGpTuned2 <- gp(y ~ 1, data = myData, cov = myCov,
optimMethod = "NLOPT_LN_NELDERMEAD", compGrad = FALSE)

coef (myGpTuned?2)
(Intercept) theta_1 sigma?2 varNoise
0.97796 0.35054 0.56109 0.03255

2.3 Using optim optimFun = "stats::optim"
Default settings

In this case, the call to the optimization function from the mle method is shown on figure 5| As
a difference with nloptr before, the same method or algorithm name "L-BFGS-B" can used for
both values of compGrad, because they are now considered as two variants of a same algorithm.
The gradient function will not be used nor even be defined when compGrad is FALSE, and the
algorithm will work differently, then requiring more iterations.

Light tuning with control

You can change the elements of the control list (except of course fnscale), or add new
elements in this list, see ?stats: :optim. For this aim, use the control argument, via the dots
mechanism. For instance the number of iterations can be set with the maxit element.

myGpOptimTunedl <- gp(y ~ 1, data = myData, cov = myCov,
compGrad = TRUE,
optimFun = "stats::optim", optimMethod = "L-BFGS-B",
control = list(maxit = 10))

11

https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms

optimFun = stats::optim

stats::optim(
par = parlni,
fn = logLikFun,
gr = thisLoglLikGrad,
method = "L-BFGS-B",
lower = parLower,
upper = parUpper,
control = list("fnscale" = -1),

50)

stats::optim(
par = parlni,
fn = logLikFun,
method = "L-BFGS-B",
lower = parLower,
upper = parUpper,
control = list("fnscale" = -1),

)

Figure 5: Default settings for the case optimFun = stats::optim. Here, for historical reasons,
we are maximizing. Although the objective function has the same name in both cases its
definition is different: it computes and “caches” the gradient when compGrad is TRUE. Then,
the gradient function passed to gr only retrieves the gradient from the cache environment.

Warning in .local(object, ...): optimisation did not converge

coef (myGpOptimTunedl)

(Intercept) theta_1 sigma?2 varNoise
#i# 0.89588 0.78663 4.12460 0.03299

Change the algorithm with optimMethod

The optimization algorithm corresponding to the formal argument method of stats::optim
should be given in the call to gp via optimMethod, and not be passed via the dots mechanism
using the method formal argument. The possible choices are as follows.

om <- optimMethods(optimFun = "stats::optim")

om

optimFun optimMethod globLoc derNo
Nelder-Mead stats::optim Nelder-Mead L N
BFGS stats::optim BFGS L P
CG stats::optim CG L P
L-BFGS-B stats::optim L-BFGS-B L P
SANN stats::optim SANN G N
Brent stats::optim Brent L N

Note that for all algorithms except "L-BFGS-B" and "Brent", the bounds on the parameters
can not be used. This can lead to an unfeasible parameter vector containing negative ranges,
or a negative noise variance.

myGpOTuned2 <- gp(y ~ 1, data = myData, cov = myCov,

optimFun = "stats::optim",

optimMethod = "Nelder-Mead", compGrad = FALSE)
coef (myGpOTuned?2)
(Intercept) theta_1 sigma?2 varNoise
0.9781 0.3576 0.5749 0.0328

12

Now, try a global optimization

myGpOTuned3 <- gp(y ~ 1, data = myData, cov = myCov,
optimFun = "stats::optim",
optimMethod = "SANN", compGrad = FALSE)

coef (myGpOTuned3)
(Intercept) theta_1 sigma?2 varNoise
0.94628 0.49691 1.43057 0.03374

Strengths and weaknesses of stats::optim

The stats: :optim function is very popular choice among R users who often use method = "BFGS"
for MLE. Although it works fine out of the box in many contexts, it suffers from limitations
making its use tedious for the estimation of gp models.

e Among the two (local) BFGS methods "L-BFGS-B" and "BFGS", only the later accepts NA
(or non-finite) values of the objective, see next section. Only the former allows the use of
box-constraints on parameters. See Table

e The objective and its gradient are used in separated functions, while important savings
can be obtained by using a joint computation. In the mle method, the joint computation
of the objective and of the gradient is obtained through a hack, using an R environment
as a cache.

Remark 7. To a certain extend, box constraints could be coped with by ensuring that the
objective function takes a value NA when the constraints do not hold. This tip allows dozens of
MLE functions in CRAN packages to work correctly although they do not duly use constraints.
However this option was not retained in kergp.

2.4 Choosing optimFun and optimMethod
Compared features

Table [I| compares the features of the default and standard algorithms.

Use gradient when possible

Most of the kernel objects shipped with kergp provide the gradient so should be used with
an optimization algorithm taking advantage of the gradient. If you are using your own covMan
kernels, consider providing the gradient.

Accept NA

Among the algorithms available in R for numerical optimization, some accept NA (or non-finite)
values of the objective: If at some point of the algorithm the objective takes a non-finite value,
other values of the parameter vector are tested until a valid value of the objective is reached,
and the algorithm can then resume its progression toward an optimum.

For the MLE of GP models, using an algorithm which accepts NA is a concern, because
it is quite common within the optimization process to face a covariance matrix which is not
numerically positive definite, leading to an undefined value of the objective.

13

optimFun optimMethod Grad. | NAs | Bounds
opts$algorithm = "NLOPT_LD_LBFGS" Yes Yes* Yes
nloptr::nloptr
opts$algorithm = "NLOPT_LN_COBYLA" No Yes* Yes
method = "BFGS" Yes Yes No
stats::optim
method = "L-BFGS-B" Yes No Yes

Table 1: Standard optimization methods in kergp::gp. With the stats::optim, a hack is
used to evaluate efficiently the gradient. Remind that with gp, the method or algorithm is
given by optimMethod. (x) With nloptr: :nloptr, NA or non-finite values of the objective are
transformed into NaN to be accepted.

2.5 Using an alternative optimization function *

There are many R packages devoted to optimization, and you might want to use one of these
to maximize the likelihood of your gp model. As is clear from what precedes, the optimiza-
tion functions in R do not have the same list of formal arguments (a.k.a. signature) and an
optimization function can have specific tuning parameters. Thus, no common interface can be
proposed for all the usable optimization functions, and it would be tedious to add even a limited
number of new usable optimization functions. Yet, it is possible and quite simple to plug any
optimization function using expressions passed in the optimCode formal of gp.

Despite of its name, the value passed to optimCode will generally not be a character object
containing a R code, but rather an ezpression, usually written as a block limited by curly braces
{ and }. The next code chunk provides an example; Although it simply changes the settings
for nloptr: :nloptr, it could clearly have used any optimization function.

myOptimCode <- expression({

optOpts <- list("algorithm" = "NLOPT_LD_LBFGS",
"xtol_rel" = 1.0e-8, "xtol_abs" = 1.0e-8, "ftol_abs" = 1le-8,
"maxeval" = 3000,
"check_derivatives" = TRUE)

opt <- try(nloptr::nloptr(x0 = parIni, eval_f = neglogLikFun,
1b = parLower, ub = parUpper,
opts = optOpts, ...))

if (linherits(opt, "try-error")) {
opt$par <- opt$solution
opt$value <- -opt$objective
opt$convergence <- opt$status > 0
} else stop("Error in my optim")
report <- NULL

1

The expression optimCode will be evaluated at some chosen point in the execution of mle
method. So it can use objects existing at this point such as parUpper. It must define an object
opt: a list containing the results of the optimization with

e opt$par the value of the parameter vector,

e opt$value the value of the maximized log-likelihood,

14

e opt$convergence a logical indicating if the optimization is thought of as eventually con-
verged.

The code can also define an object report, a list intended to report about optimization. Note
that by using try, a suitable error control can be obtained.

Now let us try our optimization code defined above. We use trace = 1 to be sure that our
code was really run.

myGpOptimCode <- gp(y ~ 1, data = myData, cov = myCov,
optimCode = myOptimCode, trace = 1)

Using the provided value of 'optimCode'
##

Checking gradients of objective function.

Derivative checker results: O error(s) detected.

##

eval_grad_f[1, 1] 8.444e+00 ~ 8.444e+00 [3.588e-06]
eval_grad_f[2, 1] = -5.952e-01 ~ -5.952e-01 [1.243e-05]
eval_grad_f[3, 1] = 3.159e+02 ~ 3.159e+02 [1.970e-07]

Warning in .local(object, ...): optimisation did not converge
coef (myGpOptimCode)

(Intercept) theta_1 sigma?2 varNoise

##t 0.9781 0.3576 0.5749 0.0328

3 Getting more information on the optimization

3.1 Printing

By default, the optimization will print nothing and only warnings of errors will be seen. The
trace argument of the mle method can be used to obtain more information on the optimization
steps. This argument can be passed from gp via the dots ellipsis ...

3.2 Tracking the parameters

The mle method has a parTrack formal argument which can be used to track the values of the
parameter 1 for which an evaluation of the log-likelihood was made. When estim and parTrack
are both set to TRUE, the MLE list in the created gp object contains a matrix parTracked having
the iterates as its rows. This matrix can be used e.g, with pairs to visualize the path of the
iterates in the parameter space.

For now, using parTrack in a parallel setting is unwarranted.

4 Further customization

4.1 Use the logLikFun closure given by gp

The gp creator function returns a log-likelihood “function” as the logLikFun element of the
MLE list. More precisely, this is a closure, not a plain function: it keeps links with some data
according to the lexical scoping mechanism. As is typical with log-likelihood functions, the
dataﬁ are not considered as formal arguments.

8Here y, X, ...

15

myGpMLElogLikFun

function (par)

{

11 <- .logLikFunO(par, object, y = thisy, X, F = thisF, compGrad = compGrad,
#Hit noise = noise, gradEnv = gradEnv, trace = trace)

}

<bytecode: 0x96d1320>
<environment: 0x6e76a38>

The logLikFun closure has only one formal argument named par. What the par vector is
assumed to be depends on the values of the values of noise when the mle method was called.
The par argument stands for the vector ¢ in section [I.4] above.

Remind that logLikFun depends much on the value of the optional argument beta that
was given when the mle method was called. If beta is NULL, the closure represents the profile
log-likelihood with 3 concentrated out, while if beta is a provided vector, the closure represents
a “slice” of the profile likelihood obtained by fixing 3 to the given value.

The logLikFun closure can be used in any optimization function in the session, but a parallel
optimization will generally not work.

At the best, the logLikFun object is to be used in the plain R session in which mle was called,
usually via gp. It is unwise to use the logLikFun object in a parallel computing framework
or even to store it in view of reusing it. With these limitations, you can use any optimization
function available to you in order to get the ML estimates. Remind that logLikFun will
sometimes return NA, so the chosen optimization function should preferably allow a NA objective
value.

4.2 Writing classes and methods

Although kergp comes with several classes of kernel ob jectﬂ the mle method is for now written
only for the "covAll" virtual class. Within the mle method, the covMat method is invoked to
compute the matrix K(X).

You can write extra covariance classes and use them with gp. For some classes of kernels a
specific mle method can be implemented and then automatically used via the dispatch mech-
anism. A typical situation where considerable savings can be achieved is for a kernel object
representing a Markov GP or a semi-Markov GP. As an example when d = 1 and Matérn kernels
with shape v = 1/2, 3/2, ... are used, the GP is a Continuous Auto-Regressive process; the
MLE can be performed in O(n) operations as well as with reduced numerical problems for dense
designs.

References

Bengtsson, H. (2017). doFuture: A Universal Foreach Parallel Adaptor using the Future API of
the ’future’ Package. R package version 0.6.0.

Johnson, S.G. (2017). The NLopt Nonlinear-Optimization Package. http://ab-initio.mit.
edu/nloptl

Ypma J. (2014). R interface to NLopt. R package version 1.0.4.

gcovMan,covRadial,.u

16

http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt

	GP models and "gp" objects
	GP models
	gp objects
	Optimize, or not
	What to optimize?
	How to optimize?

	Tuning optimization
	Different levels of tuning
	Using nloptr optimFun = "nloptr::nloptr"
	Using optim optimFun = "stats::optim"
	Choosing optimFun and optimMethod
	Using an alternative optimization function

	Getting more information on the optimization
	Printing
	Tracking the parameters

	Further customization
	Use the logLikFun closure given by gp
	Writing classes and methods

