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Abstract

Belloni, Chernozhukov, and Fernández-Val (2011) developed nonparametric quantile
regression methods to estimate and make inference on conditional quantile models. The R
package quantreg.nonpar implements these methods for partially linear quantile models.
quantreg.nonpar obtains point estimates of the conditional quantile function and its
derivatives based on series approximations to the nonparametric part of the model. It
also provides pointwise and uniform confidence intervals over a region of covariate values
and/or quantile indexes for the same functions using analytical and resampling methods.
This vignette serves as an introduction to the package and displays basic functionality of
the functions contained within.

1 Getting Started

To get started using the package quantreg.nonpar for the first time, first issue the command

install.packages("quantreg.nonpar")

into your R browser to install the package in your computer. Once it has been installed,
you can then use the package quantreg.nonpar during any R session by simply issuing the
command

library(quantreg.nonpar)

Now you are ready to use the functions and data sets contained in quantreg.nonpar. For
general questions about the package, type

∗We wish to thank Jim Ramsay for assistance with the fda package (Ramsay et al. (2013)), and Roger
Koenker for sharing the data used in Koenker (2011). We gratefully acknowledge research support from the
NSF.

†BU, Duke, MIT, and BU
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help(package = "quantreg.nonpar")

to view the package help file, or for more questions about a specific function you can type
help(function.name). For example, try

help(npqr)

2 Nonparametric Series Quantile Regression

Suppose we model an outcome variable of interest, Y, as a function of a vector of observable
covariates, X, and an unobserved variable, U, as

Y = Q(X,U),

where Q is strictly increasing in U and U andX are independent. With the normalization that
U ∼ Uniform(0, 1), Q(x, u) is the conditional u-quantile of Y given X = x, QY |X(u|x). The
conditional quantile function can be approximated by a linear combination of series terms,

QY |X(u|x) ≈ Z(x)′β(u).

The vector Z(x) includes tensor products of transformations of the elements of x such as
powers, trigonometrics, indicators, or B-splines, and has a dimension, m, that grows with
the sample size, n. The function u 7→ β(u) contains the quantile-specific coefficients of the
approximation, where each β(u) is defined as the coefficient of the quantile regression (QR)
of Y on Z(X) at the quantile u.

The coefficient vectors β(u) are estimated using the QR estimator of Koenker and Bassett
(1978). Let {(Yi, Xi) : 1 ≤ i ≤ n} be a random sample from (Y,X) and let β̂(u) be the QR
estimator of β(u), i.e.

β̂(u) ∈ arg min
β∈Rm

n∑

i=1

ρu(Yi −X ′
iβ), u ∈ U ⊆ (0, 1),

where ρu(z) = (u− 1{z < 0})z is the check function. Belloni, Chernozhukov, and Fernández-
Val (2011) obtained uniform strong approximations to the empirical series QR coefficient
process of increasing dimension

√
n(β̂(·)− β(·)) based on:

1. a conditionally pivotal process

2. a gradient bootstrap process

3. a Gaussian process, and

2



4. a weighted bootstrap process.

Each of these approximations leads to a feasible inference method. The command npqr of
the quantreg.nonpar package implements all these methods for the partially linear quantile
model:

QY |X(u|x) = g(w, u) + v′γ(u), X = (W,V ),

where W is typically the covariate of interest, V is a vector including other controls, and
g(w, u) is approximated by a linear combination of series terms g(w, u) ≈ Z(w)′β(u).

We illustrate the functionality of the package with an empirical application based on data from
Koenker (2011) for childhood malnutrition in India, where we model the effect of a child’s age
and other covariates on the child’s height. Here, Y is the child’s height in centimeters; W is
the child’s age in months; U is the unobservable ranking of the child in the height distribution;
and V is a vector of 22 controls. These controls include the mother’s body mass index (BMI),
the number of months the child was breastfed, and the mother’s age (as well as the square
of the previous three covariates); the mother’s years of education and the father’s years of
education; dummy variables for the child’s sex, whether the child was a single birth or multiple
birth, whether or not the mother was unemployed, whether the mother’s residence is urban or
rural, and whether the mother has each of: electricity, a radio, a television, a refrigerator, a
bicycle, a motorcycle, and a car; and factor variables for birth order of the child, the mother’s
religion and quintiles of wealth.

First, we load the data:

data<-india

Next, we construct the variables that will be used in the analysis. Note that the variable
prefixes “c” and “m” refer to “child” and “mother”. For each factor variable (csex, ctwin,

cbirthorder, munemployed, mreligion, mresidence, wealth, electricity, radio,

television, refrigerator, bicycle, motorcycle, and car), we generate a variable
“facvar”which is the factor version of the variable “var”. For each quadratic variable (mbmi,
breastfeeding, and mage), we generate a variable “varsq” which is the variable squared.
For example:

faccsex <- factor(csex)

mbmisq <- mbmi^2

We also construct the formula to be used for the parametric part of the model, v′γ(u):
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form.par <- cheight ~ mbmi + mbmisq + breastfeeding + breastfeedingsq + mage

+ magesq + medu + edupartner + faccsex + facctwin + faccbirthorder +

facmunemployed + facmreligion + facmresidence + facwealth + facelectricity +

facradio + factelevision + facrefrigerator + facbicycle + facmotorcycle +

faccar

Note that this formula does not contain a term for our variable of interest W ; namely, the
child’s age. Let us now construct the nonparametric bases that will be used to estimate the
effect of W , i.e., g(w, u) ≈ P (w)′β(u). For our base case, we construct a cubic B-spline basis
with knots at the {0, 0.1, 0.2, ..., 0.9, 1} quantiles of the observed values of child’s age.

basis.bsp <- create.bspline.basis(breaks=quantile(cage, c(0:10)/10))

Finally, we set the values of some of the other parameters. For the purposes of this exam-
ple, we use 500 simulations for the pivotal and Gaussian methods, and 100 repetitions for
the weighted and gradient bootstrap methods. The set of analyzed quantile indexes will be
{0.04, 0.08, ..., 0.96}, but we will have npqr print only results for quantile indexes contained in
the set {0.2, 0.4, 0.6, 0.8}. Finally, we will use α = 0.95 as the level for the confidence intervals.

B <- 500

B.boot <- 100

taus <- c(1:24)/25

print.taus <- c(1:4)/5

alpha <- 0.95

3 Output of npqr

3.1 Comparison of the Inference Processes

Initially, we will focus on the average growth rate, i.e., the average derivative of the conditional
quantile function with respect to child’s age

u 7→
∫

∂wg(w, u)µ(w), u ∈ U ,

where µ is a measure and U is the region of quantile indexes of interest. Inference will be
performed uniformly over the set of quantile indexes taus, and the standard errors will be
computed unconditionally for the pivotal and Gaussian processes; see Section 3.3.

We first construct the 4 inference processes based on the B-spline basis. In each case, we
surround the npqr call with code to calculate the speed of computation, which we will report
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later. Instead of invoking a particular process, we may also set process="none". In this case,
inference will not be performed, and only point estimates will be reported.

start.time.piv<-Sys.time()

piv.bsp <- npqr(formula=form.par, basis=basis.bsp, var="cage", taus=taus,

print.taus=print.taus, B=B, nderivs=1, average=1, alpha=alpha,

process="pivotal", uniform=T, se="unconditional", printOutput=T)

piv.time<-difftime(Sys.time(),start.time.piv,units="mins")

start.time.gaus<-Sys.time()

gaus.bsp <- npqr(formula=form.par, basis=basis.bsp, var="cage", taus=taus,

print.taus=print.taus, B=B, nderivs=1, average=1, alpha=alpha,

process="gaussian", uniform=T, se="unconditional", printOutput=T)

gaus.time<-difftime(Sys.time(),start.time.gaus,units="mins")

start.time.wboot<-Sys.time()

wboot.bsp <- npqr(formula=form.par, basis=basis.bsp, var="cage", taus=taus,

print.taus=print.taus, B=B.boot, nderivs=1, average=1, alpha=alpha,

process="wbootstrap", uniform=T, printOutput=T)

wboot.time<-difftime(Sys.time(),start.time.wboot,units="mins")

start.time.gboot<-Sys.time()

gboot.bsp <- npqr(formula=form.par, basis=basis.bsp, var="cage", taus=taus,

print.taus=print.taus, B=B.boot, nderivs=1, average=1, alpha=alpha,

process="gbootstrap", uniform=T, printOutput=T)

gboot.time<-difftime(Sys.time(),start.time.gboot,units="mins")

The output for the pivotal method is:

5



Additionally, the following results are saved in piv.bsp:

• piv.bsp$CI: a 1 × length(taus) × 2 array: each pair is the lower and upper bounds
of the 95% confidence interval for the average derivative of the conditional quantile
function at each quantile index in taus

• piv.bsp$CI.oneSided: a 1 × length(taus) × 2 array: each pair contains bounds for
two separate one-sided 95% confidence intervals (a lower bound and an upper bound, re-
spectively) for the average derivative of the conditional quantile function at each quantile
index in taus

• piv.bsp$point.est: a 1 × length(taus) matrix: each entry is the point estimate for
the average derivative of the conditional quantile function at each quantile index in taus

• piv.bsp$std.error: a 1 × length(taus) matrix: each entry is the standard error
of the estimator of the average derivative of the conditional quantile function at each
quantile index in taus (here, unconditional on the sample)
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• piv.bsp$pvalues: a three item vector containing the p-values reported above: the first
tests the null hypothesis that the average derivative is less than zero everywhere (at each
quantile index in taus); the second tests the null hypothesis that the average derivative
is everywhere greater than zero; the third tests the null hypothesis that the average
derivative is everywhere equal to zero

• piv.bsp$taus: the input vector taus, i.e., {0.04, 0.08, ..., 0.96}

• piv.bsp$coefficients: a list of length length(taus): each element of the list contains
the estimates of the QR coefficient vector [β(u)′, γ(u)′]′ at the corresponding quantile
index

• piv.bsp$var.unique: a vector containing all values of the covariate of interest, W ,
with no repeated values

• piv.bsp$load: the input vector or matrix load. If load is not input (as in this case),
the output load is generated based on average and nderivs. Here, it is a vector
containing the average value of the derivative of the regression equation with respect to
the variable of interest, not including the estimated coefficients.

Using piv.bsp$taus, piv.bsp$CI, and piv.bsp$point.est, as well as the corresponding
objects for the Gaussian, weighted bootstrap, and gradient bootstrap methods, we construct
plots containing the estimated average quantile derivatives, as well as 95% uniform confidence
bands over the quantile indexes in taus:

par(mfrow=c(2,2))

yrange <- c(.65,.95)

xrange <- c(0,1)

plot(xrange,yrange,type="n",xlab="",ylab="Average Growth (cm/month)",

ylim=yrange)

lines(piv.bsp$taus,piv.bsp$point.est)

lines(piv.bsp$taus,piv.bsp$CI[1, ,1],col="blue")

lines(piv.bsp$taus,piv.bsp$CI[1, ,2],col="blue")

title("Pivotal")

plot(xrange,yrange,type="n",xlab="",ylab="",ylim=yrange)

lines(gaus.bsp$taus,gaus.bsp$point.est)

lines(gaus.bsp$taus,gaus.bsp$CI[1, ,1],col="blue")
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lines(gaus.bsp$taus,gaus.bsp$CI[1, ,2],col="blue")

title("Gaussian")

plot(xrange,yrange,type="n",xlab="Quantile",ylab="Average Growth (cm/month)",

ylim=yrange)

lines(wboot.bsp$taus,wboot.bsp$point.est)

lines(wboot.bsp$taus,wboot.bsp$CI[1, ,1],col="blue")

lines(wboot.bsp$taus,wboot.bsp$CI[1, ,2],col="blue")

title("Weighted Bootstrap")

plot(xrange,yrange,type="n",xlab="Quantile",ylab="",ylim=yrange)

lines(gboot.bsp$taus,gboot.bsp$point.est)

lines(gboot.bsp$taus,gboot.bsp$CI[1, ,1],col="blue")

lines(gboot.bsp$taus,gboot.bsp$CI[1, ,2],col="blue")

title("Gradient Bootstrap")

title("Avg Growth Rate with 95% CI", outer=T)

As we can see in Figure 1, the confidence bands generated are roughly similar. Note that the
point estimates are the same for all the methods.

We can compare the computation times of each of the approximations using the timings
recorded earlier. Additionally, we compare the p-values generated by each of the four infer-
ence methods. Note that computation times may vary widely depending on the machine in
use. However, the relative computation times will be approximately constant across different
machines. The computation times in the table below were obtained on a computer with two
eight-core 2.6 GHz processors (note: npqr does not make use of parallel computing).

pval.dimnames<-vector("list", 2)

pval.dimnames[[1]]<-c("Pivotal", "Gaussian", "Weighted Bootstrap", "Gradient

Bootstrap")

pval.dimnames[[2]]<-c("H0: Growth Rate <= 0","H0: Growth Rate >= 0", "H0:

Growth Rate = 0", "Computation Minutes")

pvals<-matrix(NA,nrow=4, ncol=4, dimnames=pval.dimnames)

pvals[1,]<-c(round(piv.bsp$pvalues,digits=4),round(piv.time,digits=0))

pvals[2,]<-c(round(gaus.bsp$pvalues,digits=4),round(gaus.time,digits=0))
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Figure 1: Growth Rate Chart: point estimates and 95% uniform confidence bands for the
average derivative of the conditional quantile function of height with respect to age based on
B-spline series approximation.
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pvals[3,]<-c(round(wboot.bsp$pvalues,digits=4),round(wboot.time,digits=0))

pvals[4,]<-c(round(gboot.bsp$pvalues,digits=4),round(gboot.time,digits=0))

print(pvals)

These commands generate the output:

H0: Growth H0: Growth H0: Growth Computation

Rate <= 0 Rate >= 0 Rate = 0 Minutes

Pivotal 0 1 0.0237 0.9

Gaussian 0 1 0.0234 0.6

Weighted Bootstrap 0 1 0.0221 30

Gradient Bootstrap 0 1 0.0221 346

As expected, we reject at the 5% level the null hypothesis that the growth rate is negative
and the null hypothesis that the growth rate is equal to zero in all cases, and we fail to reject
the null hypothesis that the growth rate is positive in all cases. For the one-sided tests, the
relevant null hypothesis is that the average growth rate is less than or equal to zero (greater
than or equal to zero) at all the quantile indexes in taus. For the two-sided test, the relevant
null hypothesis is that the average growth rate is equal to zero at all the quantile indexes in
taus. Additionally, note that the pivotal and Gaussian methods are substantially faster than
the two bootstrap methods.

3.2 Comparison of Series Bases

Another option is to take advantage of the variety of bases available in the quantreg.nonpar
package. Here, we consider two bases: the B-spline basis used in the analysis above and an
orthogonal polynomial basis of degree 12, chosen to yield the same number of basis terms
as the B-spline basis1. We compare the estimates of the average quantile derivative function
generated by using each of these bases. We construct the orthogonal polynomial basis of
degree 12 for cage with the command:

basis.poly <- poly(cage, degree=12)

In this section, we focus on pivotal and Gaussian methods for inference. We run npqr for the
orthogonal polynomial basis using each of the two methods, mimicking the analysis run above
for the B-spline basis.

1The npqr command will also admit a basis generated by the fda package of type "fourier". We do not
illustrate this capability in this vignette since the periodic nature of Fourier bases will generate unrealistic
estimates in this nonperiodic setting.
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piv.poly <- npqr(formula=form.par, basis=basis.poly, var="cage", taus=taus,

print.taus=print.taus, B=B, nderivs=1, average=1, alpha=alpha,

process="pivotal", uniform=T, printOutput=T)

gaus.poly <- npqr(formula=form.par, basis=basis.poly, var="cage", taus=taus,

print.taus=print.taus, B=B, nderivs=1, average=1, alpha=alpha,

process="gaussian", uniform=T, printOutput=T)

Similar to Section 3.1, we plot the point estimates with their uniform 95% confidence bands
for each method - basis pair:

par(mfrow=c(2,2))

yrange<-c(0.65,0.95)

xrange<-c(0,1)

plot(xrange,yrange,type="n",xlab="",ylab="Average Growth (cm/month)")

lines(piv.bsp$taus,piv.bsp$point.est)

lines(piv.bsp$taus,piv.bsp$CI[1, ,1],col="blue")

lines(piv.bsp$taus,piv.bsp$CI[1, ,2],col="blue")

title("Pivotal Approximation, B-Spline Basis")

plot(xrange,yrange,type="n",xlab="",ylab="")

lines(piv.poly$taus,piv.poly$point.est)

lines(piv.poly$taus,piv.poly$CI[1, ,1],col="blue")

lines(piv.poly$taus,piv.poly$CI[1, ,2],col="blue")

title("Pivotal Approximation, Polynomial Basis")

plot(xrange,yrange,type="n",xlab="Quantile",ylab="Average Growth (cm/month)")

lines(gaus.bsp$taus,gaus.bsp$point.est)

lines(gaus.bsp$taus,gaus.bsp$CI[1, ,1],col="blue")

lines(gaus.bsp$taus,gaus.bsp$CI[1, ,2],col="blue")

title("Gaussian Approximation, B-Spline Basis")

plot(xrange,yrange,type="n",xlab="Quantile",ylab="")

lines(gaus.poly$taus,gaus.poly$point.est)
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Figure 2: Growth Rate Chart: point estimates and 95% uniform confidence bands for the
average derivative of the conditional quantile function of height with respect to age based on
B-spline and polynomial series approximations.

lines(gaus.poly$taus,gaus.poly$CI[1, ,1],col="blue")

lines(gaus.poly$taus,gaus.poly$CI[1, ,2],col="blue")

title("Gaussian Approximation, Polynomial Basis")

title("Avg Growth Rate with 95% CI", outer=T)

Figure 2 shows that the choice of basis does not have an important impact on the estimation
and inference on the growth rate charts. The p-values associated with the hypothesis tests
for each method - basis pair are largely similar as well:

pval2.dimnames<-vector("list",2)
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pval2.dimnames[[1]]<-c("Pivotal, B-spline", "Pivotal, Polynomial", "Gaussian,

B-spline", "Gaussian, Polynomial")

pval2.dimnames[[2]]<-c("H0: Growth Rate <= 0","H0: Growth Rate >= 0", "H0:

Growth Rate = 0")

pvals2<-matrix(NA,nrow=4,ncol=3,dimnames=pval2.dimnames)

pvals2[1,]<-round(piv.bsp$pvalues,digits=4)

pvals2[2,]<-round(piv.poly$pvalues,digits=4)

pvals2[3,]<-round(gaus.bsp$pvalues,digits=4)

pvals2[4,]<-round(gaus.poly$pvalues,digits=4)

print(pvals2)

These commands yield:

H0: Growth H0: Growth H0: Growth

Rate <= 0 Rate >= 0 Rate = 0

Pivotal, B-Spline 0 1 0.0239

Pivotal, Polynomial 0 1 0.0334

Gaussian, B-Spline 0 1 0.0264

Gaussian, Polynomial 0 1 0.0325

In all cases, the conclusion of the tests are the same across choice of basis and method at the
5% level.

3.3 Confidence Intervals and Standard Errors

Now, we illustrate two additional options available to the user. First, to perform inference
pointwise over a region of covariate values and/or quantile indexes instead of uniformly, and
second, to estimate the standard errors conditional on the values of the covariates X in the
sample. When inference is uniform, the test statistic used in construction of the confidence
interval is the maximal t-statistic across all covariate values and quantile indexes in the region
of interest, whereas pointwise inference uses the t-statistic at each covariate value and quantile
index. When standard errors are estimated unconditionally, a correction term is used to
account for the fact that the empirical distribution of X is an estimator of the distribution of
X. The option to estimate standard errors conditionally or unconditionally is not available
for the bootstrap methods. The inference based on these methods is always unconditional.

We will use only the pivotal method with a B-spline basis for this illustration. First, we run
npqr for each combination of options mentioned above:
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piv.bsp <- npqr(formula=form.par, basis=basis.bsp, var="cage", taus=taus,

print.taus=print.taus, B=B, nderivs=1, average=1, alpha=alpha,

process="pivotal", uniform=T, se="unconditional", printOutput=T)

piv.bsp.cond <- npqr(formula=form.par, basis=basis.bsp, var="cage", taus=taus,

print.taus=print.taus, B=B, nderivs=1, average=1, alpha=alpha,

process="pivotal", uniform=T, se="conditional", printOutput=T)

piv.bsp.point <- npqr(formula=form.par, basis=basis.bsp, var="cage", taus=taus,

print.taus=print.taus, B=B, nderivs=1, average=1, alpha=alpha,

process="pivotal", uniform=F, se="unconditional", printOutput=T)

piv.bsp.point.cond <- npqr(formula=form.par, basis=basis.bsp, var="cage",

taus=taus, print.taus=print.taus, B=B, nderivs=1, average=1, alpha=alpha,

process="pivotal", uniform=F, se="conditional", printOutput=T)

We obtain Figure 3 using the graphing techniques described in Sections 3.1 and 3.2. As is
visible in this figure, usage of conditional standard errors changes the confidence bands only
minimally in our example. As expected, the pointwise confidence bands are narrower than
the uniform confidence bands.

We can also compare how much of the differences (or lack thereof) in the confidence bands
are driven by differences in the standard errors versus the test statistics. Here, we compare
the estimated standard errors at the median for conditional versus unconditional inference:

piv.bsp.med <- npqr(formula=form.par, basis=basis.bsp, var="cage", taus=0.5,

B=B, nderivs=1, average=1, alpha=alpha, process="pivotal", uniform=T,

se="unconditional", printOutput=F)

piv.bsp.cond.med <- npqr(formula=form.par, basis=basis.bsp, var="cage",

taus=0.5, B=B, nderivs=1, average=1, alpha=alpha, process="pivotal", uniform=T,

se="conditional", printOutput=F)

stderr.dimnames<-vector("list",2)

stderr.dimnames[[1]]<-c("Unconditional","Conditional")

stderr.dimnames[[2]]<-c("Standard Error")

stderr<-matrix(NA,nrow=2,ncol=1,dimnames=stderr.dimnames)

stderr[1,]<-piv.bsp.med$std.error[1]

stderr[2,]<-piv.bsp.cond.med$std.error[1]

print(stderr)

These commands yield the output:
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Figure 3: Growth Rate Chart: 95% uniform and pointwise confidence bands for the average
derivative of the conditional quantile function of height with respect to age based on B-spline
series approximation.

Standard Error

Unconditional 0.008104

Conditional 0.007663

Finally, we compare p-values generated by each of the option choices:

H0: Growth H0: Growth H0: Growth

Rate <= 0 Rate >= 0 Rate = 0

Uniform, Unconditional 0 1 0.0239

Uniform, Conditional 0 1 0.0243

Pointwise, Unconditional 0 1 0.0267

Pointwise, Conditional 0 1 0.0222

In all cases, we find the expected results. Indeed, conditional versus unconditional standard
errors and uniform versus pointwise inference have little impact on the estimated p-values in
this example where the sample size is large, about 38,000 observations.
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3.4 Estimation and Uniform Inference on Linear Functionals

Finally, we illustrate how to estimate and make uniform inference on linear functionals of the
conditional quantile function over a region of covariate values and quantile indexes. These
functionals include the function itself and derivatives with respect to the covariate of interest.
The quantreg.nonpar package is able to perform estimation and inference on the conditional
quantile function, its first derivative, and its second derivative over a region of covariate
values and/or quantile indexes. We also illustrate how to report the estimates using three
dimensional plots.

First, we consider the first and second derivatives of the conditional quantile function. In the
application they correspond to the growth rate and growth acceleration of height with respect
to age as a function of age (from 0 to 59 months) and the quantile index. To do so, we use
the output of npqr called var.unique, which contains a vector with all the distinct values
of the covariate of interest (cage here). To generate this output, we estimate the first and
second derivatives of the conditional quantile function using a B-spline series approximation
over the covariate values in var.unique and the quantile indexes in taus:

piv.bsp.firstderiv <- npqr(formula=form.par, basis=basis.bsp, var="cage",

taus=taus, print.taus=print.taus, B=B, nderivs=1, average=0, alpha=alpha,

process="none", se="conditional", printOutput=F, method="fn")

piv.bsp.secondderiv <- npqr(formula=form.par, basis=basis.bsp, var="cage",

taus=taus, print.taus=print.taus, B=B, nderivs=2, average=0, alpha=alpha,

process="none", se="conditional", printOutput=F, method="fn")

Next, we generate vectors containing the region of covariate values and quantile indexes of
interest:

xsurf1<-as.vector(piv.bsp.firstderiv$taus)

ysurf1<-as.vector(piv.bsp.firstderiv$var.unique)

zsurf1<-t(piv.bsp.firstderiv$point.est)

xsurf2<-as.vector(piv.bsp.secondderiv$taus)

ysurf2<-as.vector(piv.bsp.secondderiv$var.unique)

zsurf2<-t(piv.bsp.secondderiv$point.est)

Finally, we create the three dimensional plots for:

(w, u) 7→ ∂k
wkg(w, u), (w, u) ∈ I
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Figure 4: Growth Rate and Acceleration Charts: estimates of the first and second derivatives
of the conditional quantile function of height with respect to age.

where ∂k
wk denotes the k-th partial derivative with respect to w, k ∈ {1, 2}, and I is the region

of interest.

par(mfrow=c(1,2))

persp(xsurf1, ysurf1, zsurf1, xlab="Quantile", ylab="Age (months)",

zlab="Growth Rate", ticktype="detailed", phi=30,theta=120, d=5, col="green",

shade=0.75, main="Growth Rate (B-splines)")

persp(xsurf2, ysurf2, zsurf2, xlab="Quantile", ylab="Age (months)",

zlab="Growth Acceleration", ticktype="detailed", phi=30,theta=120, d=5,

col="green", shade=0.75, main="Growth Acceleration (B-splines)")

These commands produce Figure 4. Here, we see that the growth rate is positive at all ages
and quantile indexes. The growth rate decreases in the first few months of life and stabilizes
afterwards, which can also be seen in the graph of growth acceleration. Growth accelera-
tion is negative at young ages but stabilizes around zero at about 15 months. Both growth
rate and growth acceleration are relatively homogeneous across quantiles at all ages. Saved
in piv.bsp.firstderiv$pvalues and piv.bsp.secondderiv$pvalues are the p-values from
hypothesis tests to determine whether the first and second derivatives, respectively, are neg-
ative, positive, and equal to zero uniformly over the region of ages and quantile indexes:
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Order of H0: Growth H0: Growth H0: Growth

Derivative Rate <= 0 Rate >= 0 Rate = 0

First Derivative 0 1 0.042

Second Derivative 1 0 0.061

Thus, we reject at the 5% level the null hypotheses that growth rate is negative, that growth
rate is equal to zero, and that growth acceleration is positive over all the first five years of
the children’s lives at all the quantiles of interest. We come close to rejecting at the 5% level
the null hypothesis that growth acceleration is equal to zero over all the first five years of the
children’s lives at all the quantiles of interest.

Similarly, we estimate the conditional quantile function over a region of covariate values and
quantile indexes, which corresponds to a growth chart in our application. Here, we use a
fully saturated indicator basis for the series approximation to the nonparametric part of the
model. We also compare the original estimates of the resulting growth chart to rearranged
estimates that impose that the conditional quantile function of height is monotone in age and
the quantile index. In this example, the conditional quantile function estimated using all data
is nearly monotone without rearrangement. To illustrate the power of rearrangement when
estimates are not monotone, we use a subset of the data containing the first 1,000 observations:

data.subset <- data[1:1000,]

detach(data)

attach(data.subset)

Now, we create the fully saturated indicator basis for cage:

faccage <- factor(cage)

To perform estimation using this basis, we input faccage for basis:

piv.fac.fun <- npqr(formula=form.par, basis=faccage, var="cage", taus=taus,

print.taus=print.taus, B=B, nderivs=0, average=0, alpha=alpha, process="none",

rearrange=F, se="conditional", printOutput=F, method="fn")

We also obtain the rearranged estimates with respect to age and the quantile index using the
options of the command npqr. Note that we input "both" for rearrange.vars. This option
performs rearrangement over quantiles and age. Other allowable options are "quantile"

(for monotonization over quantiles only) and "var" (for monotonization over the variable of
interest only).

piv.fac.fun.re <- npqr(formula=form.par, facvar="faccage", var="cage",

taus=taus, print.taus=print.taus, B=B, nderivs=0, average=0, alpha=alpha,
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process="none", rearrange=T, rearrange.vars="both", se="conditional", printOut-

put=F, method="fn")

Now, we construct three dimensional plots for the estimates of the conditional quantile func-
tion:

(w, u) 7→ QY |X(u|x) = g(w, u) + v′γ(u), (w, u) ∈ I,

where v are evaluated at the sample mean for cardinal variables (mbmi, breastfeeding, mage,
medu, and edupartner) and the sample mode for unordered factor variables (faccsex, fac-
ctwin, faccbirthorder, facmunemployed, facmreligion, facmresidence, facwealth, fac-
electricity, facradio, factelevision, facrefrigerator, facbicycle, facmotorcycle,
and faccar).

xsurf<-as.vector(piv.bsp.fun$taus)

ysurf<-as.vector(piv.bsp.fun$var.unique)

zsurf.fac<-t(piv.fac.fun$point.est)

zsurf.fac.re<-t(piv.fac.fun.re$point.est)

par(mfrow=c(1,2))

persp(xsurf, ysurf, zsurf.fac, xlab="Quantile", ylab="Age (months)",

zlab="Height", ticktype="detailed", phi=30, theta=40, d=5, col="green",

shade=0.75, main="Growth Chart (Indicators)")

persp(xsurf, ysurf, zsurf.fac.re, xlab="Quantile", ylab="Age (months)",

zlab="Height", ticktype="detailed", phi=30, theta=40, d=5, col="green",

shade=0.75, main="Growth Chart (Indicators, Rearranged)")

Figure 5 shows that the rearrangement fixes the non-monotonic areas of the original estimates.
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Figure 5: Growth Chart: estimates of the conditional quantile function of height based on a
fully saturated indicator approximation with respect to age.
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