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Abstract

In this note, we provide a brief summary of variables control charts and a de-
scription of how they are constructed using the rcc function in the robust quality
control chart (rQCC) R package. Using rcc function, one can construct the tra-
ditional Shewhart-type variables control charts. In addition, using various robust
location and scale estimates provided by the rQCC package, one can easily obtain
robust alternatives to the traditional charts.

1 Introduction

Control charts, also known as Shewhart control charts [1, 2, 3], have been widely used
to monitor whether a manufacturing process is in a proper state of control or not.
The traditional Shewhart-type control charts are made up of the upper control limit
(UCL), the center line (CL) and the lower control limit (LCL) and they have the form
of CL± g ·SE, where the American Standard is based on g = 3 with a target false alarm
rate of 0.027% and the British Standard is based on g = 3.09 with a target false alarm
rate of 0.020%. The UCL is given by CL + g · SE and the LCL is CL− g · SE.

In what follows, we provide how to construct the traditional Shewhart-type control
charts and robust alternatives to them using various robust location and scale estimates
provided by the rQCC package. In this note, we assume that we have m samples and
that each sample has the same sample size of n. Let Xij be the ith sample (subgroup)
from a stable manufacturing process, where i = 1, 2, . . . ,m and j = 1, 2, . . . , n. We also
assume that Xij are independent and identically distributed as normal with mean µ
and variance σ2. The A, B and D notations here follow the definitions in ASTM (STP
15-C) [4] and ASTM (STP 15-D) [5].
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2 The X̄ chart

In order to construct the CL± g · SE control limits, we consider the relation

X̄k − E(X̄k)

SE(X̄k)
= ±g.

Since E(X̄k) = µ and SE(X̄k) = σ/
√
nk, we have

E(X̄k)± g · SE(X̄k) = µ± g
√
nk
σ.

Then the control limits for the X̄ chart with the sample size nk are given by

UCL = µ+A(nk)σ,

CL = µ,

LCL = µ−A(nk)σ,

where A(nk) = g/
√
nk. In practice, the values of the parameters, µ and σ, are not

known. Thus, with the estimates µ̂ and σ̂, we have

UCL = µ̂+
g
√
nk
σ̂,

CL = µ̂, (1)

LCL = µ̂− g
√
nk
σ̂.

Thus, we need to estimate µ and σ by using each sample and then pooling these
estimates. Using the ith sample above, the sample mean and variance are given by

X̄i =
1

ni

ni∑
j=1

Xij and S2
i =

1

ni − 1

ni∑
j=1

(Xij − X̄i)
2,

where i = 1, 2, . . . ,m. Then we can estimate µ using all the samples as below:

¯̄X =
X̄1 + X̄2 + · · ·+ X̄m

m
=

1

m

m∑
i=1

X̄i.

Note that it is easily seen that ¯̄X is unbiased for µ. However, Si is not unbiased for σ
since E(Si) = c4(ni)σ, where

c4(ni) =

√
2

ni − 1
· Γ(ni/2)

Γ(ni/2− 1/2)
.

Thus, Si/c4(ni) is unbiased for σ. Then we can easily show that S̄/c4(nk) is unbiased
for σ, where

S̄ =
1

m

m∑
i=1

Si.
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Thus, by substituting µ̂ = ¯̄X and σ̂ = S̄/c4(n) into (1), we have the control limits

UCL = ¯̄X +
g√
n

S̄

c4(n)
= ¯̄X +A3(n)S̄,

CL = ¯̄X,

LCL = ¯̄X − g√
n

S̄

c4(n)
= ¯̄X −A3(n)S̄,

where A3(n) = A(n)/c4(n) = g/{c4(n)
√
n}.

It is also known that
E(R) = d2(n)σ,

where R is the sample range from Xi ∼ N(µ, σ2) and

d2(n) = 2

∫ ∞
0

{
1−

[
Φ(z)

]n − [1− Φ(z)
]n}

dz.

For more details on d2(n), one can refer to the vignette below.

> vignette("factors.cc", package="rQCC")

Then, with the ith sample, Ri/d2(n) is unbiased for σ, where

Ri = max
1≤j≤n

(Xij)− min
1≤j≤n

(Xij).

Then, with the m samples, R̄/d2(n) is unbiased for σ, where

R̄ =
1

m

m∑
i=1

Ri.

Substituting µ̂ = ¯̄X and σ̂ = R̄/d2(n) into (1), we have the control limits

UCL = ¯̄X +
g√
n

R̄

d2(n)
= ¯̄X +A2(n)R̄,

CL = ¯̄X,

LCL = ¯̄X − g√
n

R̄

d2(n)
= ¯̄X −A2(n)R̄,

where A2(n) = A(n)/d2(n) = g/{d2(n)
√
n}.

As alternatives to the above, we can use robust estimates of location and scale. For
example, using the median, we can estimate µ

µ̂ =
M1 +M2 + · · ·+Mm

m
=

1

m

m∑
i=1

Mi,
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where
Mi = median

1≤j≤n
(Xij).

One can also consider estimating σ based on the conventional MAD (median absolute
deviation) given by

MAD =

median
1≤i≤n

|Xi −M |

Φ−1(3/4)
≈ 1.4826 ·median

1≤i≤n
|Xi −M |,

where Xi ∼ N(µ, σ2) and M = median(Xi). Here Φ−1(3/4) is needed to make this
estimator Fisher-consistent [6] for the standard deviation under the normal distribution.
For more details, see the references [7, 8]. It should be noted that the above conventional
MAD estimator is Fisher-consistent but not unbiased. The “unbiased MAD” (uMAD)
with a finite sample is developed by Park, Kim and Wang [8] and implemented in the
rQCC package (see mad.unbiased function).

Then, with the m samples, we have the robust unbiased estimate of σ as follows

σ̂ =
uMAD1 + uMAD2 + · · ·+ uMADm

m
=

1

m

m∑
i=1

uMADi,

where
uMADi = uMAD

1≤j≤n
(Xij).

The rcc function constructs the control charts based on various unbiased estimates. For
example, with the median and uMAD estimates, one can obtain the control limits using
the following

> rcc(data, loc="median", scale="mad")

Another way of constructing the control limits is to use the Hodges-Lehmann [9] for
location and Shamos [10] for scale which are respectively given by

HL = median
(Xi +Xj

2

)
and

Shamos =

median
i<j

(
|Xi −Xj |

)
√

2 Φ−1(3/4)
≈ 1.048358 ·median

i<j

(
|Xi −Xj |

)
,

where
√

2 Φ−1(3/4) is needed to make Shamos estimator Fisher-consistent for the stan-
dard deviation under the normal distribution [11]. For the Hodges-Lehmann estimate,
the median is obtained by three ways: (i) the pairwise averages with i < j (denoted
by HL1), (ii) the pairwise averages with i ≤ j (HL2), and (iii) all the pairwise averages
(HL3). For more details, refer to [8]. It should be noted that the above Shamos is
Fisher-consistent but not unbiased. The Hodges-Lehmann and “unbiased Shamos” are
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also developed by [8] and implemented in R (see HL and shamos.unbiased). For exam-
ple, with the HL2 and unbiased Shamos estimates, one can obtain the control limits as
below.

> rcc(data, loc="HL2", scale="shamos")

As shown above, by choosing the options for loc and scale, one can construct
various control charts.

3 The S chart

In order to construct the CL± g · SE control limits, we can consider the relation

Sk − E(Sk)

SE(Sk)
= ±g.

Since E(Sk) = c4(n)σ and SE(Sk) =
√

1− c4(n)2 · σ, we have

E(Sk)± g · SE(Sk) =
{
c4(n)± g

√
1− c4(n)2

}
σ.

The control limits for the S chart are given by

UCL = B6(n)σ,

CL = c4(n)σ,

LCL = B5(n)σ,

where

B5(n) = max
{
c4(n)− g ·

√
1− c4(n)2, 0

}
,

B6(n) = c4(n) + g ·
√

1− c4(n)2.

Since σ is unknown in practice, we need to choose an appropriate unbiased estimate
for σ. One can consider σ̂ = S̄/c4(n). Then we have

UCL = B4(n)S̄,

CL = S̄,

LCL = B3(n)S̄,

where B3(n) = B5(n)/c4(n) and B4(n) = B6(n)/c4(n).
To obtain the robustness property, one can consider a robust estimate of σ. For

example, the unbiased MAD or unbiased Shamos estimates of σ can be used as seen
before. The limits for the S chart are calculated using the rcc function with type="S"

as below.

> rcc(data, scale="mad", type="S")

> rcc(data, scale="shamos", type="S")
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4 The R chart

We consider the relation
Rk − E(Rk)

SE(Rk)
= ±g.

Since E(Rk) = d2(n)σ and Var(Rk) = d3(n)2σ2, we have

E(Rk)± g · SE(Rk) =
{
d2(n)± gd3(n)

}
σ.

The control limits for the R chart are given by

UCL = D2(n)σ,

CL = d2(n)σ,

LCL = D1(n)σ,

where

D1(n) = max {d2(n)− g · d3(n), 0} ,
D2(n) = d2(n) + g · d3(n),

Since σ is unknown in practice, we need to choose an appropriate unbiased estimate
for σ. One can consider σ̂ = R̄/d2(n). Then we have

UCL = D4(n)R̄,

CL = R̄,

LCL = D3(n)R̄,

where D3(n) = D1(n)/d2(n) and D4(n) = D2(n)/d2(n). These limits are easily calcu-
lated using the rcc function as below.

> rcc(data, scale="range", type="R")

As afore-mentioned, we can consider a robust estimate of σ. For example, the control
limits with the unbiased Shamos are calculated as below.

> rcc(data, scale="shamos", type="R")
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