
User Guide for 42

Denis BAURAIN andMick VANVLIERBERGHE, ULiège

DRAFT - February 25th, 2021

Contents

1 Background 2
1.1 Aim and features . 2
1.2 Design principles . 2

2 Functional overview 3
2.1 Orthology-controlling heuristics . 3

2.1.1 Collection of queries . 3
2.1.2 Preflight check of orthology relationships 3
2.1.3 Search for homologues using queries . 4
2.1.4 Identification of best hits for queries . 4
2.1.5 Identification of orthologues among homologues 5
2.1.6 Optimized enrichment of multigenic families 5
2.1.7 Consolidation of redundant orthologues 5

2.2 Orthologue post-processing . 6
2.2.1 Family affiliation and orthologue naming 6
2.2.2 Contamination detection and handling . 6
2.2.3 Alignment andMSA integration . 7
2.2.4 Redundancy detection and handling . 8
2.2.5 #NEW# tags . 8

3 Usage 8
3.1 Installation and dependencies . 8

3.1.1 System Perl install . 9
3.1.2 Perlbrew install . 9

3.2 Input and configuration files . 10
3.2.1 MSAs (*.fasta) . 10
3.2.2 Reference organisms (ref_orgs, ref_banks) 11
3.2.3 Query organisms (query_orgs) . 12
3.2.4 Candidate organisms (orgs, banks) . 13
3.2.5 Taxonomic filters (tax_filter) . 14

3.3 Running 42 . 14
3.3.1 Assisted configuration using the wizard . 14
3.3.2 Command-line options . 15
3.3.3 Estimation of the contamination level in metagenomic mode 15

1

1 Background

1.1 Aim and features

42 is a phylogenomic tool designed to add (and optionally align) sequences to a preexistingmultiple se-
quence alignment (MSA)while controlling for orthology relationships andpotentially contaminating
sequences. Sequences to add are either nucleotide transcripts resulting from transcriptome assembly
or already translated protein sequences. In theory, one can also use genomic nucleotide sequences
(because 42 can splice introns), but this possibility has not been extensively tested so far.

The working hypothesis of 42 is that its orthology-controlling heuristics can enrich not only
MSAs of single-copy genes but also more complicated MSAs including terminally duplicated genes
(in-paralogues) and/or corresponding to multigenic families featuring different out-paralogues of
different ages. Preliminary tests on a broadly sampled eukaryotic data set suggest that the orthology
relationships enforced by 42 are in good agreement with those inferred with OrthoFinder software
[Emms and Kelly (2015) Genome Biol 16:157]. To this end, it relies on complete proteomes of
reference organisms.

42 is also able to enrich MSAs resulting from the split of complex multigenic families after phylo-
genetic analysis. For this, it requires decoy files composed of representative sequences of unwanted
out-paralogues. Such PARA files have to be provided by the user.

Regarding contamination, 42 implements a dual system of taxonomic filters (based onNCBI Taxon-
omy) allowing it to flag any new sequence for which the taxonomic affiliation is doubtful. Two main
approaches are available: 42 either checks that a new sequence is most similar to (an)other sequence(s)
of the expected taxon already present in the MSA (= positive filter) or that a new sequence is more
similar to a sequence in the MSA than to any sequence from a set of complete proteomes that do not
include the expected taxon (= TOL check decoy). While the power of the first mechanism is depen-
dent on the taxonomic breadth of eachMSA, the second approach is more widely applicable.

As species-rich ribosomal protein MSAs are available for both prokaryotic and eukaryotic genomes,
42 can also be used to probe the contamination level of any genome or transcriptome of interest using
the first approach. A special mode is provided for this application, termed the metagenomicmode.

1.2 Design principles

In a single run, 42 can process an arbitrary large number ofMSAs (FASTA files specified using shell jok-
ers on the command line). Moreover, one can search for orthologous sequences in as many organisms
as wanted.

42 is exclusively setup through a structured text file (e.g., YAML format). Archiving of this file allows
a user to document all the configuration details for a given run. This config file has two main parts:
one with the options that apply globally to the run and one that lists the organisms (orgs) to search
and their specific options, including the path (bank_dir) to the corresponding sequence databases
(banks in 42’s parlance). The config file further includes a mechanism of default values (defaults)

2

that apply to all organisms except when otherwise specified in individual org subsections (e.g., code).

When 42 enriches a MSA, it processes each organism in turn following the order of org subsections
in the config file. Several out-of-order optimisations ensure that similar computations (e.g., BLAST
searches) are not repeated uselessly. Parallelization is possible either by running multiple instances of
42 on a grid computer, each working on a different set of MSAs processed serially, or by enabling an
internal batch queue allowing the processing of several MSAs at once by each instance of 42.

42’s verbosity is configured directly on the command line. 42 can be very introspective if asked to be
so. At the highest verbosity level, the numerous BLAST reports are not deleted after the run and are
thus available for manual inspection (e.g., for debugging purposes).

2 Functional overview

2.1 Orthology-controlling heuristics

Each run of 42must specify a set of candidate organisms orgs that are going to be mined for ortho-
logues, a set of reference organisms (ref_orgs), for which the complete proteomes have to be avail-
able (ref_bank_dir, ref_org_mapper), and a set of query organisms (query_orgs), which should be
represented in most MSAs to be enriched. These two latter sets of organisms do not need to be iden-
tical but certainly can. They will apply to all organisms (orgs) to be added to yield the new MSAs
(out_suffix).

2.1.1 Collection of queries

For each org, 42 extracts all sequences belonging to the query_orgs in order to assemble a list of
query_seqs. Those are used to mine orgs for homologs (candidate orthologues) and to generate a
list of ‘validating’ orthologues out of ref_orgs. If a MSA does not contain any sequence fulfilling
the selection criteria, 42warns the user and falls back to selecting the longest sequence instead, which
leads to a singleton query_seqs.

2.1.2 Preflight check of orthology relationships

To ensure that it can accurately enrich MSAs in orthologous sequences, 42 verifies that query_seqs
and ref_orgs themselves satisfy its orthology criteria. This two-step process is carried out separately
for eachMSA.

First, an average BLASTP bit score is computed for each ref_org based on the individual best hits of
each query_seq against the corresponding complete proteomes. query_seqs without any hit in a
given ref_org are taken into account by contributing a value of zero to the average bit score for the
ref_org. How exactly first hits are considered best hits is explained in “Identification of best hits for
queries”.

ref_orgs without any hit to query_seqs are automatically discarded, whereas the remaining ones
are ranked in descending order on the average bit score. Low-scoring ref_orgs can be optionally
discarded by specifying a value < 1.0 for the ref_org_mul parameter of the config file. For example,

3

assuming the user lists 10 different ref_orgs and set ref_org_mul to 0.7, at most 7 ref_orgs will be
retained for assessing orthology relationships. This could be the result of the automatic removal of
two ref_orgswithout any hit and of an additional low-scoring one to honor the ref_org_mul setting.

Second, the best hits for each ref_org are BLASTed (BLASTP) against the complete proteomes of other
ref_orgs to check that they indeed recover the same best hits as the query_seqs. If any ref_org fails
with any of the other ref_orgs, a message is issued to warn the user, but 42 proceeds normally. More
details about the logic behind this are available in “Identification of orthologues…”. Otherwise, the
preflight check is considered successful.

2.1.3 Search for homologues using queries

Each one of the query_seqs is BLASTed in turn against each one of the banks for the current org.
The exact BLAST flavour is either TBLASTN or BLASTP, depending on the sequence type of org’s banks.
Moreover, default options of this first BLAST can be overridden by specifying key/value pairs in the
subsection homologues under the section blast_args of the config file (e.g., low-complexity filters,
E-value threshold, maximum number of hits).

The whole set of hits corresponding to all query_seqs is consolidated into a single list of homolo-
gous sequences. These sequences can be optionally trimmed to the segment really covered by the
matching query_seqs. This behaviour is especially useful when using (complete) genome assemblies
for enrichment, but also to avoid non-core regions to perturb orthology assessment and improves the
reliability of the intron splicing step. It is controlled by the trim_homologues parameter of the con-
fig file. The details of this trimming step can be fine-tuned by editing the other trim_* parameters
of the config file. Briefly, trim_max_shift corresponds to the maximum length allowed for an in-
tron before breaking a homologous sequence into multiple (exon-bounded) subsequences, whereas
trim_extra_margin controls how many additional nucleotides are extracted at each homologue ex-
tremities.

2.1.4 Identification of best hits for queries

Each query_seq is furthermore BLASTed (BLASTP) against the complete proteome of each ref_org.
Again, BLAST options can be overridden if needed (subsection referencesunder section blast_args).
For each query_seq, the best hit in the ref_org is recorded. However, when bit scores of subsequent
hits are nearly equal to the bit score of the best hit, the corresponding sequences are interpreted as
closely related in-paralogues and also added to the list of best hits. This behaviour can be tweaked
using the bitscore_mul parameter of the config file.

As a consequence, several best hits can be recorded for a single query_seq/ref_org pair, either be-
cause several sequences are available for the query_org (in-paralogues or out-paralogues in the case of
a multigenic family) or because several sequences match a single query_seq in the org’s banks (which
should be co-orthologues then), or for both reasons. In contrast, if a ref_org has no homologue for
the currentMSA, 42warns theuser anddrops it from the list of ref_orgs consideredby the orthology-
controlling engine.

4

2.1.5 Identification of orthologues among homologues

To sort out orthologous sequences from paralogous sequences, each homologue in the current org is
BLASTed (BLASTX or BLASTP) against the complete proteome of each ref_org (BLAST options in sub-
section orthologues under section blast_args). And now, here’s the heart of 42’s heuristics… To
be considered as an orthologue, a homologue must satisfy the following criterion for every one of the
(active) ref_orgs without exception: its best hit in the corresponding complete proteome must be
found in the original list of best hits assembled using the query_seqs.

It is important to note that 42 does not care about which particular query_seq (or query_seqs) recov-
ered the homologue in the org nor about those that recovered the best hits in the complete proteomes
of the ref_orgs. The only thing thatmatters is that the loop is closed. The set of homologues forwhich
this condition holds then become the orthologues. If the parameter ref_brh of the config file is set
to off, all homologues are automatically considered as orthologues (but see “PARA files” just below).

2.1.6 Optimized enrichment of multigenic families

For multigenic families split over multiple MSAs, one can also optionally assemble PARA files. Such
a file should contain sequences representative of the other sub-families of a multigenic family, so as
to help 42 to even better discriminate between orthologous and paralogous sequences. Sequences in
PARA files are in FASTA format but do not need to be aligned. To be considered as an orthologue, a
homologue must obtain a best hit BLAST bit score that is higher when compared to the sequences of
the MSA than those of the PARA file.

For example, let us say we have a family composed of 4 subfamilies (A-D). The initial orthologous
group would include the 4 types of paralogues in a single MSA. Based on a phylogenetic analysis of
this MSA, we could split this orthologous group into 4 distinct MSAs (A-D). If we consider the en-
richment of subfamily A (famA.fasta), then the sequences of the other subfamilies (B, C and D)
should be used to build the PARA file (famA.para). Hence, any homologous sequence that would be
more similar to a sequence in the PARA file (say of type B) than to any sequence (of type A) in theMSA
would then be rejected as paralogous.

In some cases, PARA files might be a replacement for the main heuristics of 42. Yet, both approaches
can be used jointly for maximal accuracy.

2.1.7 Consolidation of redundant orthologues

When using (highly) redundant transcriptome assemblies for MSA enrichment, some genes can be
represented by a series of very similar transcripts, either partially overlapping or containing minor
sequencing errors. To deal with these situations, 42 provides the parameter merge_orthologues in
the config file, which is set to off by default. When enabled (with on), orthologues are first fed to
CAP3 in an attempt tomerge someof them into contigs. Successfullymergedorthologues are identified
by a trailing +N tag where N is the number of orthologous sequences removed in the merging process.
The contig itself is named after the longest orthologous sequence composing it. The details of this
merging step can be fine-tuned by editing the other merge_* parameters in the config file.

5

2.2 Orthologue post-processing

Once orthologues are identified, each one is BLASTed (BLASTX or BLASTP) against the MSA itself to
recover its closest relatives (BLAST options in subsection templates under section blast_args).

2.2.1 Family affiliation and orthologue naming

If the most closely related sequence in the MSA belongs to a given family (e.g., mt-), the orthologue
is affiliated to the same family, as did the original forty. This allows enriching MSAs correspond-
ing to multigenic families. Note that only the most closely related sequence can be used to infer the
orthologue’s family.

The orthologue identifier is built using the org name and the accession of the corresponding sequence
in the org’s banks, which helps tracking down all the sequences added to aMSAby 42 (e.g., for debug-
ging purposes). This is thus different from the original forty, in which most sequences were contigs
having lost all connection with the nucleotide sequences in the org’s banks.

2.2.2 Contamination detection and handling

42 then seeks to determine whether the orthologue is a genuine orthologue or a xenologue contam-
inating the org’s banks. To this end, two main avenues are available: positive taxonomic filters and
decoy proteomes sampled across the diversity of the Tree of Life (TOL). While both approaches are
in principle combinable, 42 currently implements them as exclusive options. Positive filters are en-
abled by adding tax_filter parameters in the config file, whereas decoy proteomes further require
enabling the tol_check option.

To use positive filters, 42must infer the taxonomy of the orthologue by analysing the identifiers of the
closest sequences in the MSA. How this is precisely carried out depends on several parameters in the
config file. For simplicity, the user can choose between two predefinedmodes to set these parameters
in bulk: best-hit and megan-like.

In best-hitmode, only themost closely related preexisting sequence is used to infer the orthologue’s
taxonomy, whereas in <megan-like> mode, several sequences are considered and a Last-Common-
Ancestor (LCA) inference is performed on them. The latter mode often yields more reliable taxo-
nomic affiliations, but at the obvious expense of accuracy (i.e., only at the genus or family level instead
of species level).

If the inferred taxonomy for the orthologue satisfies the taxonomic filter, the orthologue is simply
added to the MSA. Otherwise, it is tagged as a contaminant (c#). When an orthologue is tagged as
a contaminant, the binomial of the organism at the origin of the taxonomic affiliation (or a higher-
ranking taxon in case of LCA inference) is further appended to its identifier (i.e., ...Genus_species).
This mechanism can also be used to estimate the level of contamination of any genome or transcrip-
tome (see the “Metagenomic mode” below).

Taxonomic filters are optional and require a local copy of the NCBI Taxonomy database (tax_dir
parameter in the config file). It can be installed using setup-taxdir.pl (see “Installation…” below).

6

The logic behind decoy TOL proteomes is similar to the way PARA files work but with a twist. To
be considered as uncontaminated, an orthologue must obtain a best hit BLAST bit score that is higher
when compared to the sequences of the MSA than those of the decoy TOL proteomes. However,
decoyproteomes fromorganisms taxonomically related to theone towhich theorthologuebelongs are
expected to yield very good bit scores, maybe higher than any bit score from sequences already present
in theMSA. To avoid rejecting a genuinely uncontaminated orthologue because of this possibility, 42
skips all decoy hits that satisfy the taxonomic filter specified for the organism being added.

Let us take an example. Imagine that our MSAs only contain sequences from hymenopterans (e.g.,
wasps and ants). If we enable decoy TOL proteomes when adding some bees, contaminated ortho-
logues corresponding to say, parasiticmites such asVarroa destructor, will be correctly rejected because
they match some tick protein included in Ixodes decoy proteome. However, genuine bee sequences
would also be wrongly rejected because they match with the Apis decoy proteome. To avoid this, we
will use a taxonomic filter to skip Hymenoptera (or even Hexapoda) hits in decoy proteomes.

As one can see, both avenues rely on taxonomic filters. Choosing the right level of taxonomic filtration
is no easy task and often requires a bit of testing. In short, the more distant potential contaminants
are from organisms being added, the easier it is to find an adequate taxonomic filter (see “tax_filter”
below for details).

2.2.3 Alignment andMSA integration

To integrate the orthologue into theMSA, 42 chooses themost appropriate template(s) for alignment
among the closest relatives. As for taxonomic inference, it considers each of them in turn and stops
once the coverage of the orthologue cannot be significantly improved. This allows 42 to select a slightly
less related sequence as a templateprovided it alignswith a longerpart of theorthologue. Byhowmuch
exactly coverage has to be improved for a close sequence to be retained as a template can be fine-tuned
with the coverage_mul parameter of the config file.

Then comes the alignment itself. With nucleotide banks, both BLAST and exonerate aligners are
available, whereas only BLAST can be used with protein banks. The preferred aligner can be specified
using the aligner parameter of the config file.

The BLAST aligner has beenmuch improvedwith respect to the aligner of the original forty. It extracts
all the HSPs for the selected template(s) from the XML BLAST report and uses them as guides for
integrating the orthologue fragments into the MSA. Then, once all fragments have been integrated
for all candidate organisms, it merges them into a single contiguous sequence per orthologue. When
fragments overlap, themerger gives precedence to the fragments corresponding to the highest-scoring
templates and HSPs.

When the new exonerate aligner is preferred, only the longest selected template is used. Inmost cases,
the orthologue can be aligned as a single large fragment. If not, 42 emits different types of warnings
depending on the exact issue. In worst cases (e.g., exonerate crashing), the orthologue cannot be
integrated, often due to structural rearrangements between the orthologue and the template. To avoid
discarding the orthologue in such cases, one can enable BLAST as a fall-back for exonerate failures by

7

setting the aligner parameter to exoblast.

Aligned orthologues are integrated into theMSA all together at the end of the file but in the following
arrangement: first by family, then by candidate organism and then by accession. Contaminants are
interspersed with genuine orthologues but can be easily identified thanks to their tag (c#).

2.2.4 Redundancy detection and handling

Independently of the aligner, 42 never integrates twice the same sequence for a given organism, even if
obtained frommultiple orthologues. Further, it filters out subsequences included in sequences from
the same organism that are either already present in theMSA or that are listed in the NON counterpart
of the MSA. NON files are a bit like PARA files (non-aligned sequences in FASTA format) except that
matches must be exact. Finally, when a newly added orthologue includes a sequence already present
in the MSA for the same organism, the latter can be either kept or removed, depending on the value
of the parameter ali_keep_lengthened_seqs in the config file.

2.2.5 #NEW# tags

All newly added orthologues are tagged by a specific #NEW# suffix. This tag helps 42 to organize the
post-processingof new sequences (e.g., fragmentmerging and redundancydetection) but is alsouseful
for the end-user to identify which sequences have been added by 42. Therefore any preexisting #NEW#
tag is cleared when 42 starts processing a MSA.

While automatic untagging can be disabled via the parameter ali_keep_old_new_tags in the config
file, one should note that such preexisting new sequences are basically invisible to 42. This means that
they will not be chosen as queries for mining transcriptomes nor as templates for aligning additional
new orthologues. Moreover they will not be considered for taxonomic analyses. That is why the
recommended approach is to let this parameter set to its default value.

3 Usage

3.1 Installation and dependencies

42 is written inModern Perl but relies on 1 to 3 external dependencies: NCBI-BLAST+, Exonerate and
CAP3. However only BLAST is really required. You should download and install the corresponding
binaries the way you feel the most appropriate for your system. (Alas this can be tricky.)

• ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/

• https://www.ebi.ac.uk/about/vertebrate-genomics/software/exonerate (use classical
v2.2.0 not newer v2.4.0)

• http://seq.cs.iastate.edu/cap3.html

Most other dependencies can be handled automatically by cpanm. If you cannot (or do not want to)
modify your system Perl install, you will need to setup a Perlbrew environment (https://perlbrew
.pl/). Below are two distinct sets of commands that should work on Ubuntu 20.04.

8

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
https://www.ebi.ac.uk/about/vertebrate-genomics/software/exonerate
http://seq.cs.iastate.edu/cap3.html
https://perlbrew.pl/
https://perlbrew.pl/

3.1.1 SystemPerl install

Obviously, this requires admin rights on your system:

$ sudo su

$ apt install zlib1g-dev # maybe unnecessary

$ apt install libssl-dev # maybe unnecessary

$ apt install libmodule-build-tiny-perl # maybe unnecessary

$ apt install ncbi-blast+

$ apt install cpanminus

$ cpanm Bio::FastParsers

$ cpanm Bio::MUST::Core

$ cpanm Bio::MUST::Drivers

$ cpanm Bio::MUST::Apps::FortyTwo

$ exit

If a cpanm command fails, retype it with the --force option:

$ cpanm --force Bio::MUST::Drivers

Finally install a local mirror of theNCBI Taxonomy:

$ setup-taxdir.pl --taxdir=taxdump/

3.1.2 Perlbrew install

Depending on how pristine your system is, some of the commands below might

be unnecessary. However they should do no harm.

install development tools

$ sudo apt update

$ sudo apt install build-essential

$ sudo apt install ncbi-blast+

download the perlbrew installer...

$ wget -O - http://install.perlbrew.pl | bash

initialize perlbrew

$ source ~/perl5/perlbrew/etc/bashrc

$ perlbrew init

search for a recent stable version of the perl interpreter

$ perlbrew available

install the last even version (e.g., 5.24.x, 5.26.x, 5.28.x)

(this will take a while)

$ perlbrew install perl-5.26.2

9

install cpanm (for Perl dependencies)

$ perlbrew install-cpanm

enable the just-installed version

$ perlbrew list

$ perlbrew switch perl-5.26.2

make perlbrew always available

if using bash (be sure to use double >> to append)

$ echo "source ~/perl5/perlbrew/etc/bashrc" >> ~/.bashrc

if using zsh (only the destination file changes)

$ echo "source ~/perl5/perlbrew/etc/bashrc" >> ~/.zshrc

Major 42 dependencies are the Bio::MUST series of modules. Install them as follows.

$ cpanm Bio::FastParsers

$ cpanm Bio::MUST::Core

$ cpanm Bio::MUST::Drivers

Since Bio::MUSTmodules rely on external bioinformatics programs and comewith complex test suites,
they sometimes raise errors during installation. If you encounter any such error, consider enabling -
-force and/or --notest options of cpanm.

$ cpanm --force Bio::MUST::Drivers

Install 42 itself. All remaining dependencies can also be taken care of by cpanm.

$ cpanm Bio::MUST::Apps::FortyTwo

Finally install a local mirror of the NCBI Taxonomy. It will be used by 42 to taxonomically affiliate
inferred orthologous sequences.

$ setup-taxdir.pl --taxdir=taxdump/

3.2 Input and configuration files

To help with the configuration of the numerous parameters of the software, we designed a config file
generator: yaml-generator-42.pl. When run with the --wizard option, it will guide you through
the configuration by prompting for all required parameters (pressing ENTER selects the default value).
At the end of process, it will produce a YAML config file named config-$out_suffix.yaml and a file
(build-$out_suffix.sh) providing the command to reproduce the exact same configurationwithout
using the wizard.

3.2.1 MSAs (*.fasta)

42 native file format for MSAs is known as the ALI format. It is very similar to the well-known FASTA

format except for a few differences: (1) sequences must appear on a single (long) line; (2) gaps are
encoded as asterisk characters (*) instead of dashes (-) and any whitespace is interpreted as missing

10

character states; (3) sequence identifiers accept a singlewhitespacebetween genus and species (more on
this just below); and (4) comment lines (starting with the hashtag character #) are allowed. Although
42 can read and write FASTA files transparently, its ALI roots sometimes play tricks to the user.

This is especially true for sequence identifiers. Basically, each identifier has to hold the organism name
(org) followed by a separator (@) and by a protein/gene accession number. The organism name is
usually the binomial name. Genus and species must be separated by a whitespace (if in ALI format) or
underscore character (_ if in FASTA format). In addition, strain name and/or NCBI taxon id are also
allowed after the species name but each preceded by an underscore character (_). If both are used in
the sequence identifier, the taxon id has to come last. Finally, all sequence identifiers must be unique
within eachMSA. See examples below:

Genus species@protacc

>Arabidopsis thaliana@AAL15244

Genus species_taxonid@protacc

>Arabidopsis thaliana_3702@AAO44026

Genus species_subspecies_taxonid@protacc

>Arabidopsis lyrata_lyrata_81972@EFH60692

Genus species_taxonid@protacc

>Archaeoglobus fulgidus_2234@WP_048095550

Genus species_strain_taxonid@protacc

>Archaeoglobus fulgidus_DSM4304_224325@AAB90113

Genus species_strain_taxonid@protacc

>archaeon 13_1_20CM_2_54_9_1805008@OLE74253

3.2.2 Reference organisms (ref_orgs, ref_banks)

The reference proteome set must be described in the config file. Firstly, each of the reference pro-
teomes must be in FASTA format in order to be formatted as a BLAST database with the makeblastdb
command. For robustness, it is advised to use simple (one-word) sequence identifiers here.

$ for REFORG in *.faa; do makeblastdb -in $REFORG -dbtype prot \

-out `basename $REFORG .faa` -parse_seqids; done

Then, yaml-generator-42.plwill read afile describing the referenceproteome set (ref_org_mapper.idm).
This file is composed of two columns separated by a tabulation character (\t) with the first column
being the organism name (ref_org) and the second being the database basename (ref_bank).

If your banks are like this:

$ ls Arabidopsis_thaliana_3702_bank.*

Arabidopsis_thaliana_3702_bank.faa

Arabidopsis_thaliana_3702_bank.phr

Arabidopsis_thaliana_3702_bank.pin

Arabidopsis_thaliana_3702_bank.pog

11

Arabidopsis_thaliana_3702_bank.psd

Arabidopsis_thaliana_3702_bank.psi

Arabidopsis_thaliana_3702_bank.psq

Then the ref_org_mapper file should look like this:

Arabidopsis thaliana_3702 Arabidopsis_thaliana_3702_bank

If youmainly work with microbes, youmay want to name your banks after the NCBI GCA/GCF ac-
cessions of the corresponding genome assemblies. In this case, you can use fetch-tax.pl to generate
a suitable file from a list of such numbers:

$ head -n5 banks.idl

GCA_000008085.1

GCA_000011505.1

GCA_000012285.1

GCA_000014585.1

GCA_000019605.1

$ fetch-tax.pl --taxdir=taxdump/ --org-mapper --item-type=taxid banks.idl

$ head -n5 banks.org-idm

Nanoarchaeum equitans_GCA_000008085.1 GCA_000008085.1

Staphylococcus aureus_GCA_000011505.1 GCA_000011505.1

Sulfolobus acidocaldarius_GCA_000012285.1 GCA_000012285.1

Synechococcus sp._GCA_000014585.1 GCA_000014585.1

Korarchaeum cryptofilum_GCA_000019605.1 GCA_000019605.1

3.2.3 Query organisms (query_orgs)

query_orgs should be listed in a file (queries.txt) and spelled exactly as in yourMSAs (excluding the
FASTA-specific ‘>‘ character preceding each sequence identifier). This file will be processed by yaml-
generator-42.pl to populate the configfile. To easily draft a list of query_orgs, you can for example
use the 10 to 20 most represented organisms across all your MSAs (prior to enrichment).

$ grep -h \> *.fasta | cut -f1 -d'@' | cut -c2- | sort | uniq -c | sort -rn | head -n10

22498 Danio_rerio

21071 Homo_sapiens

20722 Mus_musculus

18933 Monodelphis_domestica

18616 Loxodonta_africana

17762 Latimeria_chalumnae

12

17678 Canis_familiaris

17114 Xenopus_tropicalis

16665 Anolis_carolinensis

16611 Sarcophilus_harrisii

Note: Organism names must follow the same rules as above. This means that no underscore should
appear between genus and species. 42 emits a warning when suspecting you got it wrong. However,
it cannot fix this for you. When working with native ALI files, this issue does not crop up:

$ grep -h \> *.ali | cut -f1 -d'@' | cut -c2- | sort | uniq -c | sort -rn | head -n10

22498 Danio rerio

21071 Homo sapiens

...

3.2.4 Candidate organisms (orgs, banks)

The candidate organisms set must be described in the config file. Firstly, each of the candidate or-
ganism files must be in FASTA format in order to produce a BLAST database with the makeblastdb
command:

$ for ORG in *.fna; do makeblastdb -in $ORG -dbtype nucl \

-out `basename $ORG .fna` -parse_seqids; done

Within each BLAST database, sequence identifiers must be unique. 42 will use the first run of non-
whitespace characters as the accession. If this first chunk is composed of multiple parts separated by
pipe characters (|), only the last part is taken as the sequence accession (see “Orthologue naming…”
above).

sequence identifier accession

>seq37 seq37

>comp12_c0_seq1 comp12_c0_seq1

>EH093040.1 Sl_SlB_01N04_T7 SLB ... EH093040.1

>MMETSP0151_2-20130828|7_1 len=174 7_1

>gi|301500844|ref|YP_003795256.1| ... YP_003795256.1

Then, as for ref_orgs above, you need to produce a bank_mapper.idm file composed of two columns
separated by a tabulation character (\t) with the first column being the organism name (org) and the
second being the database basename (bank).

Euglena gracilis Euglena_bank

Note: Again, organism names must follow the same rules as above!

13

3.2.5 Taxonomic filters (tax_filter)

Note: this section deals with an advanced use of 42. It can be skipped if you do not plan to check
added sequences for potential contaminations (see “Contamination detection…” for theoretical back-
ground).

Bio::MUST modules provide quite sophisticated taxonomic filters. Hence, in tax_filter syntax,
wanted taxa are to be prefixed by a + symbol, whereas unwanted taxa are to be prefixed by a - symbol.
Wanted and unwanted taxa are linked by logical ORs. Here are a few examples and their meaning:

[+Poaceae] # any grass

[-eudicotyledons] # anything but a dicotyledon flower

[+Amphibia, +Amniota] # any amphibian or amniote

[+Bacteria, -Cyanobacteria] # any non-cyanobacterial bacterium

In principle, 42 can also use such filters, but the generator currently supports only the plain
tax_filter syntax shown in the first example (+Poaceae). Yet, it can assist you in finding the
adequate taxa to specify based on the organisms you add.

For this to work, you must define at which taxonomic level(s) you want to set the filter. When spec-
ifying several levels (--levels option), the script will try to check for the next level in case one is
missing. You can put as many levels as you want separated by a comma (,, no whitespace character)
when using the --wizard option and by a whitespace character () as a command line argument. An-
other possibility is to choose manually from the NCBI lineage for those that fail (in this case use the
--choose_tax_filter=1 argument). If you want to select manually for each candidate organisme set
the argument --choose_tax_filter=2.

Alternatively, you can define a custom taxonomic filter for each organism by adding a third column
to the bank_mapper.idm file.

3.3 Running 42

3.3.1 Assisted configuration using thewizard

Now that you are done preparing files, let’s run the wizard!

$ yaml-generator-42.pl --wizard

Using the --wizard option enables an interactive mode where you will be asked to enter each param-
eter in the terminal.

Note: Pressing the ENTER key selects the default value encoded in 42.

Two run_mode are available metagenomic or phylogenomic. The phylogenomic mode is designed
to enrich MSAs with orthologues for subsequent phylogenomic analysis. In contrast, the metage-
nomic mode is designed to estimate the contamination level of transcriptomic data using reference
ribosomal proteinMSAs. The latter mode does not modify theMSAs but instead produces one taxo-
nomic report perMSA listing the lineage of each identifiedorthologous sequence. Whennot specified,

14

run_mode internally defaults to phylogenomic.

Note: the phylogenomic mode also produces taxonomic reports but deprived of taxonomic affilia-
tions for the purpose of one-on-one.pl (not currently distributed on CPAN).

Thewizard does its best to assist you in building your config file. In particular, it scans the directories
you specify for relevant files. Hence, to identify the banks and ref_banks files, it looks for files ending
with a specific suffix. These suffices can be provided using the bank_suffix and ref_bank_suffix op-
tions, respectively. If your banks are built from protein sequences, use .psq; otherwise, for nucleotide
sequences, use .nsq.

Because of this scanning behavior, it is better to prepare your files directly on the computer on which
you plan to run 42. If you try to prepare your config file locally (for subsequent upload on a remote
computer), it is very likely that the wizard complains about some directories not being found.

3.3.2 Command-line options

Since the configuration (config) file specifies all the details, running 42 boils down to a simple com-
mand:

$ forty-two.pl --config=config.yaml *.fasta

By default, 42 is very terse. Yet it can be made quite verbose using the corresponding --verbosity

option. If you need all the debugging information, select level 6. In any case, it is useful to redirect the
STDERR stream to a log file for post-run analysis.

$ forty-two.pl --config=config.yaml --verbosity=3 *.fasta 2> 42.log

42 supports multithreading by allowing parallel enrichment of multiple MSAs. This is controlled by
the --threads command line option. MSAs will be arranged in an internal queue and processed in
parallel using the specified number of threads. As long as there remainmoreMSAs to enrich than that
number, 42will makes efficient use of the CPU cores. Obviously, there is no speed gain in specifying
more threads thanMSAs to process.

$ forty-two.pl --config=config.yaml --threads=20 *.fasta

Unfortunately, the current parallel implementation scheme leads to completely scrambled log files.
There is thus no point to ask for a high verbosity level.

3.3.3 Estimation of the contamination level inmetagenomicmode

42 can be used as a stand-alone contamination detection tool to spot foreign sequences and estimate
the contamination level in transcriptomic or genomic data as well as the taxonomic sources of con-
tamination. To this end, it comes with two sets of ribosomal protein MSAs: one set of 78 eukaryotic
MSAs, manually curated and continuously enriched with new species in H. Philippe’s lab, and one
set of 90 prokaryotic MSAs, fetched fromRiboDB. Both sets are available at https://bitbucket.or
g/phylogeno/42-ribo-msas/.

15

https://bitbucket.org/phylogeno/42-ribo-msas/
https://bitbucket.org/phylogeno/42-ribo-msas/

For each transcriptome/genome, 42 recovers the ribosomal protein orthologs and then labels each
one by computing the last common ancestor (LCA) of their closest relatives (best BLAST hits) in
the corresponding MSA (excluding self-matches). The algorithm relies on the megan-like mode
described in “Contamination detection and handling”. In this regard, since ribosomal proteins are
highly conserved, we suggest a more stringent parameterization of the megan-like algorithm, so as to
avoid false positives during LCA computation, with a --tax_score_mul of 0.99 instead of 0.95 and
a --tax_min_ident of 50 instead of 0.

The follow up consists in running debrief-42.pl, which parses the taxonomic reports produced by
42 in order to compare the taxonomic label (LCA) of each ortholog computed by 42with the source
organism lineage (according toNCBI Taxonomy) and classifies the sequences as contaminants if they
differ at a predefined taxonomic rank, based on a first user-defined list of taxa (--seq_labeling). After
each ortholog has been classified, an estimated contamination percentage is computed.

Additionally, contaminations are further classified to determine the main sources of contaminants,
based on a second user-defined list of taxa (--contam_labeling), which allows the user to fine control
the output report. In this regard, we distinguish two types of sequences, classified contaminations
and unclassified contaminations. The latter are those that bear an uninformative taxonomic label,
i.e., too broad to point to a specific lineage with accuracy (e.g., Sar). Finally, the sequences that can
only be affiliated at the highest taxonomic levels, such as cellular organisms, Eukaryota, Bacteria
or Archaea, are classified as unknown sequences.

A typical command for running the metagenomic debriefer is shown below:

$ debrief-42.pl --indir=./MSAs/ --in=-42 --taxdir=taxdump/ \

--seq_labeling=seq-labels.idl --contam_labeling=contam-labels.idl

16

	Background
	Aim and features
	Design principles

	Functional overview
	Orthology-controlling heuristics
	Collection of queries
	Preflight check of orthology relationships
	Search for homologues using queries
	Identification of best hits for queries
	Identification of orthologues among homologues
	Optimized enrichment of multigenic families
	Consolidation of redundant orthologues

	Orthologue post-processing
	Family affiliation and orthologue naming
	Contamination detection and handling
	Alignment and MSA integration
	Redundancy detection and handling
	#NEW# tags

	Usage
	Installation and dependencies
	System Perl install
	Perlbrew install

	Input and configuration files
	MSAs (*.fasta)
	Reference organisms (ref_orgs, ref_banks)
	Query organisms (query_orgs)
	Candidate organisms (orgs, banks)
	Taxonomic filters (tax_filter)

	Running 42
	Assisted configuration using the wizard
	Command-line options
	Estimation of the contamination level in metagenomic mode

