
A Guide to Eobj

Eli Billauer
elib@flextronics.co.il

April 21, 2003

This guide applies to version 0.2 (beta release) of Eobj .

Copyright c© 2003, Eli Billauer.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published
by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,

and no Back-Cover Texts. A copy of the license is included in Appendix A.

Eli Billauer elib@flextronics.co.il

Contents

1 Introduction 5
1.1 Eobj in a nutshell . 5

1.1.1 What is Eobj ? . 5
1.2 About the project . 5
1.3 About the author . 5
1.4 Acknowledgements . 6
1.5 This guide’s outline . 6

2 Writing main scripts 7
2.1 How it all works . 7
2.2 The init() call . 7

3 Eobj objects 9
3.1 Background . 9
3.2 An example . 9
3.3 Properties . 10

3.3.1 What it looks like . 10
3.3.2 The basics . 11
3.3.3 Property names . 11
3.3.4 Undefs and empty lists . 12
3.3.5 More about constant properties 12
3.3.6 “Magic” callbacks . 13
3.3.7 The property path . 14
3.3.8 Methods for lists . 15

3.4 Creating and using objects . 15
3.4.1 The formalilties . 15
3.4.2 An example . 16
3.4.3 Property paths in new . 16
3.4.4 The global object . 17

3.5 The object dumper . 17

4 Eobj classes 18
4.1 How this section is organized . 18
4.2 Classes and inheritance . 18

4.2.1 Source files and classes . 18
4.2.2 The phases of the object system 19
4.2.3 Class definition . 20
4.2.4 “Normal” methods . 20
4.2.5 Methods overriding new . 22
4.2.6 The autoloading mechanism . 22
4.2.7 Eobj objects vs. plain Perl objects 23

4.3 Useful methods . 24
4.4 Error reporting . 24

4.4.1 Some philosophy . 24

A Guide to Eobj 2

Eli Billauer elib@flextronics.co.il

4.4.2 The list of functions . 25
4.4.3 “Hidden” classes . 26

4.5 Summary: How to write classes properly 26

5 Eobj main script API 28
5.1 Exported subroutines . 28

5.1.1 The exported subroutine init() 28
5.1.2 The exported subroutine inherit() 28
5.1.3 The exported subroutine override() 30
5.1.4 The exported subroutine underride() 31
5.1.5 The exported subroutine definedclass() 32
5.1.6 The exported subroutine globalobj() 33

5.2 The global variables . 33
5.2.1 The variable $VERSION . 33
5.2.2 The variable $globalobject . 33
5.2.3 The variable %classes . 33
5.2.4 The variable %objects . 34

6 The root class API 35
6.1 Methods . 35

6.1.1 The method new() . 35
6.1.2 The method set() . 35
6.1.3 The method get() . 36
6.1.4 The method const() . 38
6.1.5 The method globalobj() . 39
6.1.6 The method who() . 40
6.1.7 The method safewho() . 40
6.1.8 The method isobject() . 41
6.1.9 The method objbyname() . 42
6.1.10 The method objdump() . 43
6.1.11 The method suggestname() . 44
6.1.12 The method addmagic() . 45
6.1.13 The method seteq() . 47
6.1.14 The method pshift() . 49
6.1.15 The method ppop() . 49
6.1.16 The method punshift() . 50
6.1.17 The method ppush() . 50
6.1.18 The method prettyval() . 51
6.1.19 The method linebreak() . 52

6.2 Properties . 53
6.2.1 The property name . 53

A Guide to Eobj 3

Eli Billauer elib@flextronics.co.il

A GNU FDL license 54
A.0 PREAMBLE . 54
A.1 APPLICABILITY AND DEFINITIONS . 54
A.2 VERBATIM COPYING . 56
A.3 COPYING IN QUANTITY . 56
A.4 MODIFICATIONS . 57
A.5 COMBINING DOCUMENTS . 59
A.6 COLLECTIONS OF DOCUMENTS . 59
A.7 AGGREGATION WITH INDEPENDENT WORKS 60
A.8 TRANSLATION . 60
A.9 TERMINATION . 60
A.10 FUTURE REVISIONS OF THIS LICENSE 61

B To Do 62
B.1 Core issues . 62

B.1.1 AUTOLOAD caching . 62
B.2 Complete the half-made . 62

B.2.1 The error messages . 62
B.3 System management . 62

B.3.1 Organizing classes . 62
B.3.2 Run options . 62

B.4 User Interface . 63
B.5 Debug tools . 63

B.5.1 Error trace . 63
B.5.2 All class loader . 63

A Guide to Eobj 4

Eli Billauer elib@flextronics.co.il

1 Introduction

1.1 Eobj in a nutshell

1.1.1 What is Eobj ?

Eobj is object oriented programming in Perl for the masses. It’s is a wrapper for Perl’s
native handling of objects, and thus it reliefs the programmer from mastering some
rather advanced issues in Perl programming.

Unlike native Perl OO programming, using Eobj is based on plain Perl syntax, and the
use of some special functions. Methods are defined very much like subroutines, with
no need to know how to wrap them in modules. Eobj comes with one predefined root
class, which consists of basic methods, including methods for accessing properties
easily.

Aside from being a quick starter, Eobj also includes some special features, especially
in the field of inheritance and class load on demand.

1.2 About the project

Eobj is an extraction (actually a rip-off) from a larger project, Perlilog (See
http://www.opencores.org/perlilog/). The latter project was developed with the
support of Flextronics Semiconductors in Israel, with the purpose of making Verilog
IP cores easier to integrate.

Since I couldn’t find any adequate environment for OO programming (and Perlilog
definitely needed one), I wrote one for myself. After finishing off Perlilog, it occured
to me that the OO environment could be useful for others, so I extracted the it from
Perlilog.

This became Eobj .

1.3 About the author

Eli Billauer was born in 1971, in the Israeli city Haifa, where he lives today, and works
as a freelancer (recently taken picture to the right).

He received his B. Sc. in Electrical Engineering (Summa Cum Laude) in 1993 at
the Technion, Haifa. He spent the six following years as a development engineer in

A Guide to Eobj 5

Eli Billauer elib@flextronics.co.il

a well-established hi-tec environment. During these years he was fortunate enough
to gain experience in various fields of his profession. The main focus was on digital
communication and signal processing, with MATLAB and DSP programming as the
primary tools, but he was keen to learn any new field, as required. The result was
knowledge in diverse subjects, such as RF on one hand, and Internet protocols on
the other.

He has one year and a half of experience in managing and lead-
ing a project, which had a core of 4 engineers, and several other
members for various tasks of shorter terms.

He is a freelancer since year 2000, as which he’s taken projects in
various fields, such as writing DSP code for GSM Layer I, signal
processing of motion-detecting optical sensors, and a Sigma-Delta
modulator for audio frequencies.

It was due to the last mentioned project that he learned Verilog.

Eli installed Linux on his home computer in 1998, and has been a Linux fan since. He
learned Perl at about this time, originally in order to create a web site.

He is a proud member of Haifux, the Linux club of Haifa.

1.4 Acknowledgements

This project would not exist without the warm support of Flextronics Semiconductors
in Israel, and Dan Gunders in particular. Lior Shtram made the connection between
me and Flextronics, so I owe him thanks as well.

Erez Volk opened my eyes by introducing me to the wonderful world of GNU and
Linux. He is also responsible for my first encounter with Perl.

And Larry Wall created this magic named Perl. We all owe him, I think.

1.5 This guide’s outline

If you want to start working with Eobj , you’re reading the wrong thing. Eobj comes
with a man page, which gives exactly enough to get moving. This guide gets right
down to the details.

Section 2 is short, and describes the little there is to know about the main script.

Next, section 3 explains how objects are used in Eobj . This is another stage in
understanding what actually happens in the system, and it opens some additional
possibilities.

Section 4 then explains how classes should be written.

Sections 5 and on are API summaries. They describe how each individual function or
method should be used. It’s rich with examples.

A Guide to Eobj 6

Eli Billauer elib@flextronics.co.il

2 Writing main scripts

2.1 How it all works

Before beginning, it’s important to distinguish between the main script and the class
source files.

The main script is what you would usually call “the script”: When we run Perl, we give
some file as the script to run. That file, possibly with some other Perl modules that it
runs, is the main script.

The main script is divided in two phases:

1. Declaration of classes. The main script tells what classes it wants to have, and
what source file declares each class’ methods.

2. Creating and using objects. This is usually where the main script does some-
thing useful: Objects are created, their methods are called, and so on.

We shift from phase 1 to phase 2 with a call to init(). All class declarations must
come before init(), and all objects creations must come afterwards.

Main scripts feel like regular Perl scripts: In particular, they are by default run under a
no strict mode (unlike Eobj classes).

2.2 The init() call

In all the script examples, we had a call to init(). This call must be made after
new classes have been added to the system by the main script, but before it starts to
create objects. Why is explained in section 4.2.2.

When init() is called, Eobj reads the site_init.pl file in the sysclasses directory.
It may seem paradoxal that this file is in this directory, but there are technical reasons
for this.

The file is expected to have one single subroutine, init(), which is called. This
routine performs the following tasks:

• The global object is generated (explained in section 3.4.4).

• If an init.pl file exists in the main script’s current directory, it is executed.

A Guide to Eobj 7

Eli Billauer elib@flextronics.co.il

The really interesting part about this is that a per-project initialization file can be gen-
erated, since the user’s init.pl is looked for in the project home directory (unless the
home directory is changed by the main script prior to init()).

Both site_init.pl and init.pl are executed by a call to init(), which must be
written in a Eobj class style. How to write classes is widely explained in section 4.2,
but the following rules should be enough to get a descent init.pl file:

• The initialization script is written in a subroutine named init().

• All variables that are defined in the subroutine must be localized with my1. The
subroutine (unlike the main script) is run in a use strict mode.

• Calls to Eobj -specific routines must be done with explicit package name, as in

&Eobj::inherit(’myclass’, "myclass.pl", ’interface’);
&Eobj::interfaceclass(’myclass’);

1If you have to, use complete $Foo::Bar-like identifiers for global variables

A Guide to Eobj 8

Eli Billauer elib@flextronics.co.il

3 Eobj objects

3.1 Background

Even though the plain Perl environment supports objects as a natural part of its core,
the syntax for using objects in Perl is quite cumbersome. This is probably a result of
not wanting to make objects a special creature in Perl, but a natural follower of pack-
ages, references and hashes. The result is a very powerful and flexible mechanism
that supports all the goodies that you could expect from object-oriented programming,
and a few more tricks that are beyond the tradition. On the other hand, the path to
object-oriented programming includes learning a few advanced topics in Perl, which
is probably the reason why few scripts actually incorporate objects in Perl for real-life
applications.

Eobj includes an environment for object-oriented programming which is, in fact, a
wrapper of the native environment. It makes use of the powerful features that Perl
gives in this field to create a very simple syntax to define classes, generate objects,
call methods and access properties. Some features were added to support function-
alities special for Eobj .

The Eobj object environment frees the programmer from awareness to references and
blessed such in particular, packages and the need to know how to write Perl modules.
The knowledge needed to use Eobj classes, as well as generating them, includes
only plain Perl programming and the acquaintance with some additional functions,
that are described in the sequel. Knowledge of general object-oriented programming
techniques and concepts are needed as well, of course.

3.2 An example

Before getting into the complicated explanations, let’s consider a simple example,
which shows the basics of using objects in Eobj .

Let’s assume that we have a file named myclass.pl which is:

sub sayit {
my $self = shift;
my $what = shift;
print "I was told to say $what\n";

}

A Guide to Eobj 9

Eli Billauer elib@flextronics.co.il

This file is used to declare a class that is used in the following script:

use Eobj;

inherit(’myclass’,’myclass.pl’,’root’);
init;

$object = myclass->new(name => ’MyObject’);
$object->sayit(’hello’);

We now explain this script briefly, only to give the general picture:

The first line in the script, use Eobj;, makes Perl load the Eobj environment.

Then we have an inherit command. This tells the Eobj environment, that a new
class, with the name myclass should be declared, the methods are defined in
myclass.pl (listed just above), and that the class should be derived from the Eobj
basic class, root.

We may now view myclass.pl, and see that it consists exactly of a subroutine def-
inition, in well-known Perl syntax. In effect, this subroutine will become the method
sayit in the myclass class. Note that the subroutine’s first argument goes to a vari-
able named $self, which is a handle to the called object. The argument that is given
by the caller will reach the variable $what.

We now return to the main script. After the inherit declaration, Eobj is called with
init. As this function implies, it causes the Eobj environment to initialize.

Having done this, we generate a new object of class myclass, give it the name
MyObject, and put its handle (actually reference) in $object.

Finally, we call this object’s method sayit, with the argument ’hello’. As a result,
the text I was told to say hello will be printed.

3.3 Properties

3.3.1 What it looks like

Properties are read and written with method calls such as:

$object->set(’myscalar’, ’The value’);
$scalar = $object->get(’myscalar’);

$object->set(’mylist’, ’One’, ’Two’, ’Three’);
@list = $object->get(’mylist’);

%hash = (’Foo’ => ’Bar’,
’Daa’ => ’Doo’);

A Guide to Eobj 10

Eli Billauer elib@flextronics.co.il

$object->set(’myhash’, %hash);
%the_hash = $object->get(’myhash’);

3.3.2 The basics

The properties in Eobj are divided into two types: Settable and constant. Settable
properties are just like any variable: They can be assigned a value at any time, and
the value can be changed as often as desired. Settable constants are created with
set().

Constant properties, as the name implies, are assigned a value only once. Any at-
tempt to change their value will result in a fatal error. This restriction is useful whenever
changing the property’s value will violate some basic assumption. For example, the
name property is constant for good reasons: It is the object’s identifier, and as a such,
the connection between the name and the object’s handle (reference) is recorded in
the system. Constant properties are created with const().

The properties are accessed mainly with three basic methods (defined in the root
class): get() for retrieving properties’ values, set() for setting the values of settable
properties, and const() to assign values to constant properties. It goes something
like:

$object->set(’property’, ’value’);
$value = $object->get(’property’);

Properties are also assigned values (as constants) when creating a new object using
new. See section 3.4 for more about this.

The properties in Eobj are in general lists. Scalars are considered as a list with one
item. get behaves in such a way, that you’ll get back exactly what you gave set or
const, no matter if it was a list or a scalar.

Or a bit more detailed: If a property is assigned a scalar, and get() is called in list
context, you simply get back a list with one element, which is the value assigned.
But if a property is assigned a list, and get() is called in scalar context, only the first
element is returned.

A detailed example is shown in section 6.1.3.

3.3.3 Property names

Property names behave like (and are, in fact) hash keys: They are case-sensitive, and
all characters are allowed. It is recommended not to have newlines (\n) in the names,
since these have a special meaning in the internal structure, and may cause strange
property collisions.

For normal, practical purposes, case-sensitive alphanumeric names is the right thing
to do. Don’t make the names too long either, only as a matter of convenience.

A Guide to Eobj 11

Eli Billauer elib@flextronics.co.il

See section 3.3.7 regarding the directory-like structure, in which the properties can be
organized.

3.3.4 Undefs and empty lists

Sometimes a property is not set, and sometimes we want to set its value to “nothing”.
The Eobj API attempts to return a sensible value, depending on the situation and the
context.

If a property has not been set (or has been removed), get will return an undefined
value (a.k.a. undef) if it is called in scalar context, and an empty list if it’s called in list
context. It is perfectly proper (no warnings) to call get on an undefined value.

For example, if we assume that the property ’property’ was not defined when the
following code snipped was run,

$scalar = $test -> get(’property’);
@list = $test -> get(’property’);

$elementscount = $#list + 1;
print "Was not defined and had $elementscount elements\n"
unless (defined $scalar);

it will print “Was not defined and had 0 elements”.

We may also remove a property by assigning it with either an undef value, an empty
list, or a list containing only one undef value. The property will be removed, and will for
all purposes behave as if it was never assigned a value. Naturally, a constant property
can’t be removed, but using const with an undefined value on an undefined property,
will simply have no effect.

Here are a few examples:

$test -> set(’property’, ()); # Will remove ’property’
$test -> set(’property’, undef); # Will remove ’property’
$test -> set(’property’); # Will remove ’property’
$test -> set(’property’, (undef)); # Will remove ’property’

$test -> set(’property’, (undef, undef)); # ’property’ is set to a value!

3.3.5 More about constant properties

Constant properties differ from settable properties in two respects:

• Constant properties can’t be changed after they are set

A Guide to Eobj 12

Eli Billauer elib@flextronics.co.il

• A callback subroutine may be triggered when the constant is assigned a value.

The second issue of callbacks is described in the next section (sec. 3.3.6). We now
focus on the issue of the exact meaning of the value being “constant”.

If a property is not assigned a value, there is, of course, no problem with assigning
a such. If the property has been assigned a value with const, Eobj allows const
to be called again for the same property, only if the value to assign the property is
“the same”. We shall see what “the same” means below. It may not seem much of
a privilege to be allowed to call const more than once with the same value, but this
turns out to be useful in callback routines.

We now define what we mean with “the same”: We recall that scalars are considered
by the system as a list with one item, so we may reduce the entire discussion to lists.
Two lists are “the same” if (and only if) they have the same number of elements, and
each of the elements in the first list is Perl eq with the corresponding element in the
second.

The choice of eq may not fit all properties. For some properties, a different criterion
may be in place, in spirit of what means “the same” for that certain property. In that
case, the seteq method (see section 6.1.13 for a description and example) may be
used to substitute eq comparison with some other criterion.

When const is called for an already assigned property, it will never affect the existing
value, and no magic callbacks will occur, even if the new and existing value are differ-
ent (this statement is relevant when seteq was used to soften the criterions for “the
same”).

3.3.6 “Magic” callbacks

“Magic” callbacks are possible only on constant properies. The motivation behind this
mechanism is to force some properties to have the same value. These properties may
belong to the same object, or to different objects.

Suppose that we want property A and B to have the same value. One way of doing
this is to look for all places in the script where A and B are set, and make sure that if
one of the properties is set, so is the other one.

Another, safer and more elegant way to accomplish this, is to tell the environment,
that we want some piece of script to be executed, as soon as A is assigned a value.
This script will then copy the value of A to B. Then we do the opposite thing with B, so
that the value of B is copied to A.

A “magic” callback request (done with the addmagic() method), is precisely asking
Eobj to run some codepiece, as soon as some constant property is assigned a value.
Naturally, if the property already has a value, the callback will be fired off immediately.

The technical details of this mechanism are widely described in section 6.1.12.

A few noteworthy points about “magic” callbacks:

A Guide to Eobj 13

Eli Billauer elib@flextronics.co.il

• “Magic” callbacks are never executed more than once, due to the nature of con-
stant properties.

• When using “magic” callbacks for its original purpose, the callback script get’s
the value of A and const’s B with that value. And vice versa.

• Usually, a callback will be set for both A and B, so that they are mutually de-
pendent. So if A is assigned a value, B will be assigned a value by virtue of
a callback. As a result, B’s callback script will be fired off, resulting in A being
const’ed again. If all is done properly, A will be re-const’ed with the same value,
so nothing will actually happen on this second callback.

• If property A and B are tied equal with a pair of callbacks, and B and C are tied
in the same way, all three are, in fact, forced to have the same value: As soon
as one of them is assigned a value, it will spread to all three by a chain effect.

• “Magic” callbacks may be used to force relations between properties, that are
not necessarily equality. Complex relations between values of properties may
be forced by writing the script snippets to maintain these relations.

• “Magic” callbacks are not necessarily used to force values on other properties,
but can be used whenever we want a notification about some property’s assign-
ment.

3.3.7 The property path

Similar to paths of directories and subdirectories in filesystems, there are paths to
the properties in Eobj . When referring to a property by a string (like in $object ->
get(’property’)), we relate to a property at root level. We may access properties
at a deeper level by something like $object -> get([’my things’, ’property’]).
In this example, ’my things’ functions as a “directory”, and ’property’ is a property
within that directory.

Property paths may be used in all places, where a property name is expected.

There is nothing special about putting properties into deeper paths, except that it
lessens the chances to collide property names. There is no method to get a list of
properties within a path2. You’re supposed to know what you’re doing.

In fact, the entire path structure can be viewed as a multidimensional array, in which
the key consist of a number of scalars rather than one. A property is recognized by
the exact sequence in the list, which defines its “name”. Viewing this structure as
directory-like is merely a recommendation to have the properties organized better.

We may thus conclude the following facts:

• $object -> get(’property’) and $object -> get([’property’]) are ex-
actly the same thing.

2except for the objdump() method, which is a debugging tool. See section 3.5

A Guide to Eobj 14

Eli Billauer elib@flextronics.co.il

• It is OK to have a property with the name of what appears to be a “directory”. We
may thus call $object -> set(’like dir’, $value1) and after that $object
-> set([’like dir’, ’like node’], $value2) and get two distinct and legal
properties. This may be a confusing, but yet legal setting.

Some Perl programmers recognize that the squared brackets, [and], create a ref-
erence to a list, so the \@-type of reference can also be used, but this is usually not
needed – it is enough to know that the path is a list of nodes to walk in the tree,
with square brackets instead of round brackets. This list can be arbitrarily long, and
it always begins from the root, and describes the nodes on the way to the desired
property.

As with simple properties, it’s proper to get undefined properties in unknown paths.
An undef or empty list is returned, and no more fuss is made about that.

3.3.8 Methods for lists

Since the properties are considered as lists, there are four methods in the root class,
which allows some easier access to the values: pshift, punshift, ppush and ppop.
These methods are described in sections 6.1.14–6.1.17. In general, they behave very
similar to their plain-Perl siblings. It is worth to mention, that these methods can’t be
used on constant properties, since they change the property’s value.

3.4 Creating and using objects

3.4.1 The formalilties

Objects are created by a call of the format:
class -> new(Initial properties);
Such a call returns a handle (if you care, a blessed reference to a hash), which is
usually kept in a scalar variable for future calls to the object.

When creating a new object in Eobj , the name property must always be set, or a
fatal error will be issued. The object’s name property is its identifier in the system,
and must therefore be case-insensitively unique (the suggestname method is useful to
create unique names, see section 6.1.11).

The initial properties are set by passing a hash, where the keys are the property
names, and the values are their values. If we want to set a property to a list, the value
of the relevant key in the passed hash should be a reference to a list, containing these
values (possibly an anonymous list).

Note that properties that are assigned values with new are constant properties. See
section 3.3 for more about constant properties and properties in general.

In Eobj as in common Perl, there is nothing really special about the word new, except
that it happens to be the name of a method, that creates new objects. All classes

A Guide to Eobj 15

Eli Billauer elib@flextronics.co.il

in the system should create their objects by inheriting the new method from the root
class. Extensions are allowed by using the SUPER:: prefix on overriding methods of
new (see section 4.2.5).

3.4.2 An example

While the rules above may appear complicated, this is how it really is:

$object = root->new(name => ’MyObject’,
theKey => ’TheValue’,
myList => [’One’, ’Two’, ’Three’],
Five => 5);

In this example, we create a new object of the root class, and we set four properties:
name, theKey, myList and Five. It is important to note that the name of the properties
don’t need quotation mark (even though they are allowed), but the properties’ values
are indeed quoted, or given as any literal value in Perl. Moreover, note the square
brackets in giving the value of myList. This property will assigned a plain list with the
elements given, not a reference to a list.

For sake of clarity, if we continued this section’s example with:

print $object->get(’theKey’)."\n";
@list=$object->get(’myList’);
print join(’,’, @list)."\n";

We would get:

TheValue
One,Two,Three

3.4.3 Property paths in new

In section 3.3.7 we mentioned a directory-like structure of properties. It is possible to
initialize properties deeper than the root level with new by using references to hashes.
Some Perl programmers may recall, that an anonymous reference to a hash can be
created by using curly brackets, { and }, so the following example should make it
clear:

$object = myclass->new(name => ’MyObject’,
MyDir => {MyKey => ’TheValue’,

MyOther => ’TheOther’}
);

A Guide to Eobj 16

Eli Billauer elib@flextronics.co.il

In this case, $object -> get([’MyDir’, ’MyKey’]) returns TheValue.

The rule is that if the value is a reference to a hash, then the key becomes a “directory”,
and the hash is interpreted as pairs of property names and their values, within that
“directory”. This may be recursively repeated to achieve unlimited depth in the path.

3.4.4 The global object

The global object is useful when:

• We want to keep global information somewhere – the global object’s property
table is easily accessed.

• We want to run some basic method, but we don’t have an object at hand. The
global object is derived from the global class, which is derived from the codegen
class, so it supports quite a few methods.

There is a special function to get its handle from the main script, globalobj. Within
method declarations, $self -> globalobj should be used instead. See section 3.5
for an example of using the global object to reach a method.

The Global Object’s properties function as the system’s global variables. Different
classes may add properties as necessary to this object. Care should be taken to avoid
name collisions between property names: Use class-specific and unique names in the
Global Object.

For example, if objects of some class need to be aware of each other, a property in
the Global Object may be a list of handles to objects of that certain class. To do this,
each object of that certain class will need to add itself to the list when it’s created.

3.5 The object dumper

A nice method of the root class, is the object dumper, which is intended for debugging.
When called, it prints human-readable information about all or some of the objects.
This information consists of the object’s name, a brief description, its class and most
important, all it properties. The data is presented in a format that is practical for human
reading, so information is truncated occasionally where it would take too much space.

See section 6.1.10 for a complete description of this method. But trying

globalobj->objdump();

at the end of some main script should make things clear.

A Guide to Eobj 17

Eli Billauer elib@flextronics.co.il

4 Eobj classes

4.1 How this section is organized

The purpose of this section is to supply the knowledge which is necessary to write
code classes.

Section 4.2 is a tutorial on writing Eobj classes in general.

Section 4.4 presents how errors should be reported in from within a class. In a com-
plex system, this may help the user to get a clue of what really went wrong.

A very short section 4.5 offers a checklist summary of the main things to keep in mind
when writing a class.

4.2 Classes and inheritance

4.2.1 Source files and classes

In Eobj , a class is defined by telling the system to read a file, and to consider
the subroutine definitions in it as the methods of the named class. For example,
inherit(’myclass’, ’myclass.pl’,’root’) means to read the source file named
myclass.pl, and create a new class, myclass. Methods are inherited from the root
class, as specified by the third argument.

Note that there is no necessary connection between the name of the file and the
name of the class. Even more important, it is not specified in the file from what class
myclass should inherit methods. The file is only a list of subroutine (in fact, method)
declarations, whose object-oriented context is given by the script.

As is seen in the example, the word myclass may then be used as myclass ->
new(...) in order to generate a new object.

An even more important feature of this special class definition scheme, is the possi-
bility to enrich an existing class with new methods, without changing its name. This is
done with the override function. This function can be used with either two or three ar-
guments. In the two-argument case, we have something like override (’myclass’,
’otherfile.pl’), assuming that we have already declared the myclass class with
inherit. As a result of calling override, the given file (otherfile.pl in this exam-
ple) will be read. If new methods are encountered, they are simply added to the class.
If methods that collide with existing methods are found, those in the given file will

A Guide to Eobj 18

Eli Billauer elib@flextronics.co.il

override those that were defined before.

Any class in the system, including the root class may be enriched with override,
which opens the ability make changes in the basic classes, without needing to “tell”
the other classes, and still have our new code executed by them.

In some cases, the class we want to override may not exist. Since the purpose of
overriding an existing class is merely to make sure that some specific methods are
supported in this class, it makes sense to create a new class with the same name if
the class doesn’t exist already. This is the purpose of the three-argument format of
override: If override is called with three arguments, and the class mentioned doesn’t
exist, override behaves exactly like inherit with the same arguments. Hence, it
declares a new class, with the third argument as the class to inherit from.

If override is called with only two arguments, and the overridden class isn’t defined,
an error is issued.

As can be expected from a proper object-oriented environment, overriding doesn’t
necessarily mean cancelling out the previous functionality of the overridden method.
By using the SUPER:: prefix, we call the original method, if it exists (this syntax is the
common Perl way to reach the overridden method). See section 4.2.3.

See sections 5.1.2 and 5.1.3 for specific information about these two functions, as
well as examples of using them.

A third function underride works opposite to override. Its purpose is to catch calls
to methods that are not already defined in the class, or calls via the SUPER:: prefix
within the class. As the name of this function implies, all existing methods in the class
will override those that appear in the file given by underride.

4.2.2 The phases of the object system

The inheritance relations between classes are set during the execution, and is not pre-
defined in the classes themselves. Setting up the class tree during run-time makes
the definition of classes more flexible, but altering the class definition for existing ob-
jects could also be an opening for exotic bugs. Because of this (and also due to the
way the classes are loaded), there is a clear distinction between three phases in the
main script:

• Declaration of classes and their relationships. During this phase, inherit and
override are called in order to set up the class tree. No objects should be
generated during this phase.

• A call to init. Some internal variables are set up during the execution of this
function, and the Global Object is generated.

• Creation and use of objects – during this phase, anything except attempt to alter
the class tree is allowed.

A Guide to Eobj 19

Eli Billauer elib@flextronics.co.il

In essence, this means that the classes and their position in the inheritance tree are
declared before any of them is used. This is enough freedom to allow the system to
choose one set of classes over another, or fine-tune the functionality of some meth-
ods, depending on run-time parameters. A Eobj script might thus build a different
class structure depending on the target device, the synthesis tool or whether some
other external tools should be used.

But these manipulations can be done until the first object is created, which happens
when init is called.

Even though it is possible to stretch these limits a bit without getting error messages,
it is highly recommended to comply with this phase structure.

4.2.3 Class definition

All Eobj classes, including the “built-in” classes, are defined by source files, in which
the class’ methods are defined. These files are perfectly readable as plain Perl files,
but special rules apply to make them useful method declarations.

The strongest rule, is that all variables inside the subroutines must be declared “lo-
cally”, that is, using Perl’s my. The source files are read in a “use strict” context, so if a
variable is mentioned without being explicitly my’ed, a fatal error will be issued at the
loading of the class.

This is more than a technical rule for programming: It is strongly recommended not to
have any global variables other than properties of the Global Object. Even though a
global variable in the source file (the package, actually) might be a tempting shortcut,
it may cause strange bugs as the Eobj environment plays freely with namespaces. A
conservative “local variable” approach ensures steady functionality.

In short, a class defintions consists of method definitions, one after the other, where
each method definition is a subroutine definition with no use of Perl global variables.

We now divide the method definitions to two groups: “Normal” methods and methods
overriding new. Their distinction is in the fact that “normal” methods are called in
association with an exisiting object, while methods that override new are called in
order to create one, so there isn’t necessarily any associated object.

4.2.4 “Normal” methods

In the example in section 3.2, a method called say was declared and used within an
object. The general format of a method declaration is as follows:
sub name of method {
my $self = shift;
Your code here...

}
Writing a method is very much like writing a regular subroutine. The main difference

A Guide to Eobj 20

Eli Billauer elib@flextronics.co.il

is that a handle (reference) to the called objects is given as the first argument. It is
customary to put this handle in the scalar $self, usually with $self = shift. There
is nothing special about the name $self, except that it’s easier to read the code when
it follows this convention. After this shift operation, @_ is the list of arguments, so the
rest of the code can be written exactly like a normal subroutine. There are plenty of
examples in this guide.

One important choice we have to make for each method we write, is if we want our
method to override the functionality of a possibly inherited method, or if it should
extend it. In Eobj as in plain Perl, defining a method means that it comes instead of an
already defined, possibly inherited method, if it existed. If we want the method to do
more than it possibly did before, we call the inherited method with a SUPER:: prefix.

To demonstrate this, assume that we want the donothing method to be defined (in
order to avoid an undefined method error), but we don’t want to make any changes
if it was already defined in the class we inherit methods from. The following method
declaration will do the job:

sub donothing {
my $self = shift;
$self -> SUPER::donothing(@_);

}

Note that we explicitly call the inherited method. As opposed to normal method calls,
a SUPER call does not generate any error if it doesn’t exist (that is, if we actually didn’t
override any method, but declared it for the first time).

It is very important to be careful about the arguments that we pass in the SUPER call.
We must always shift away the first argument, and thus make the inherited method
see exactly the same arguments as ours (the “self” handle will be added again by Perl
due to the call). On the other hand, we must be sure not to alter @_ before making this
call, or make a copy of the argument list before changing it (it is very popular to read
arguments by using shift, which changes @_). All this is true, of course, if we don’t
want to intentionally change the argument list before passing it on.

Since we control the stage in which the inherited method is called, we may perform
this call either before or after doing some functionality of our own method. Where it
doesn’t seem to matter, it is highly recommended to call the inherited method as soon
as possible (immeditately after $self = shift). This will minimize the chances to
generate odd bugs as a result of mistakenly changing @_.

See section 5.1.2 for a more extensive example of SUPER calls.

A last remark about writing methods, which goes for any object-oriented programming:
In places where you would write a subroutine in normal Perl, write another method in
the class, and use it as a method by calling it via the $self object. Don’t be paranoid
about someone else changing the way your class will work. It’s a good feature, and
there are plenty of ways to screw things up anyhow.

A Guide to Eobj 21

Eli Billauer elib@flextronics.co.il

4.2.5 Methods overriding new

The root class supplies a new method, which creates a new object of a given class.
This method must never be overridden with any other method, but it may be extended.
This is useful to add special properties to any new object, or any other operation that
is needed whenever a new object comes to life.

This is done by having a piece of code as follows in the respective class source file:
sub new {
my $this = shift;
my $self = $this->SUPER::new(@_);
Your code here...
return $self;

}

Note, that unlike the “normal” methods, we don’t get $self by shift’ing @_, but rather
by calling the inherited new, which generates a new object for us. With this $self at
hand, we may use it exactly like in any other method. @_ is also exactly like in a normal
method after shift’ing off $this, but it will be useless in many cases, since it consists
of the initial properties, which will be initialized by root’s new method.

A word about $this: In almost all cases, $this will hold the name of the class. This
is true when new is called in the class -> new(...) format. But it is also allowed to
call new from an existing object, which will result in a new object of the same class.

For this reason, don’t use $this as the class’ name, but rather ref($self). If
you want to know the class’ name before calling new, use $class = ref($this) ||
$this

The new() method usually returns $self, so except for in rare cases, this should be
done by the extension as well.

4.2.6 The autoloading mechanism

The Eobj environment attempts to read source files as late as possible. In effect, each
source file is read when an object, whose methods are based on the class, is created.
The source file is read once, when it is needed for the first time.

This mechanism allows the declaration of more classes than are needed for execution,
with minimal overhead for unused classes.

The autoload mechanism is transparent to the programmer. The only thing that needs
to be taken into consideration, is that a source file may contain bugs or syntax errors,
that will not be detected until the class is actually used. If a Eobj script is executed
successfully, it does not indicate that all source files are free from syntax errors, but
only those who were used.

A Guide to Eobj 22

Eli Billauer elib@flextronics.co.il

4.2.7 Eobj objects vs. plain Perl objects

If you happen to know object programming in plain Perl, then you have more knowl-
edge than is actually needed, and you may possibly make some mistakes because of
that. This section is here to help you avoid them.

Otherwise, you may skip this section with no worries.

The class source files are not read directly by the Perl interpreter. Rather, their content
is eval()’ed after adding a header (this is done in memory, while the source file is left
untouched). This header includes the well-known declarations for a proper Perl class
(the Perl package pragma, and setting @ISA, if you care). These are transparent to
both class writers and users. In particular, the package name may be different from
the class name (even though the class name is used in the common way to generate
new objects of the class).

The Eobj object environment is merely a wrapper for the common Perl objects, so the
behavior is very similar. The main pitfall for experienced Perl object programmers, is
to manipulate variables that the system assumes that the user is not aware of.

In general, the class source files should be as plain as possible: A list of subroutines,
nothing else in the file. Every diversion from this is an opening to strange behaviours,
and that shouldn’t be needed except for rare cases.

So here are a few don’t:

• Do not use the package pragma, or attempt to access a package by its name,
using the package::name format. Eobj feels free to change package names
without any notice, so you don’t know what package name your class source file
will get, even if you access the methods with a known class name. If is forgivable
to access the Eobj or PLerror namespaces directly, but this should be avoided,
even at the cost of slower execution.

• Never access an object’s properties directly. In other words, never make use of
the fact that an object is actually a reference to a hash. It’s not only that the way
the data is stored may change without notice in future versions, but you may
also corrupt the data structure.

• Never use bless. The objects that Eobj creates are properly blessed, and there
should be no reason to rebless them. It is heavily assumed that all objects in the
system were generated by the root class’ new or one of its derivatives. Don’t
make a new of your own.

• Don’t declare global variables within the package (that is, your class source file).
It will work nicely at first, but will mess up things quite soon.

• Don’t hassle with @ISA, @EXPORT and friends. These are global variables, so the
previous “don’t” should have been enough, but playing with these is even worse.

A Guide to Eobj 23

Eli Billauer elib@flextronics.co.il

• Avoid use statements (except for use Eobj once in the main script). Specifically,
use should not be used as a pragma (like use warnings), while reading modules
with use should be done very carefully.

4.3 Useful methods

There is a comprehensive listing of methods at the end of this manual. What follows is
merely a tip-off regarding methods that is good to know about, and weren’t mentioned
yet.

• The who() and safewho() methods are good to get a short and concise string
that describes the current object in a way that humans understand. This is useful
when creating error messages. Also, when writing a class, consider to override
this method with something that will describe the objects better, but be sure
to make something similar to the existing who() methods (overriding who() is
enough). See sections 6.1.6 and 6.1.7 for more about this.

• The globalobj() method is useful to find the global object of the system. It is
useful within method-defining code, since the common globalobj() command
doesn’t exist in the relevant namespace. Thus, a self-call to this method is the
solution. See section 6.1.5.

• The isobject() method can be used to verify if some scalar is a handle to an
object. This verification should be done if there is any doubt about this, before
attempting to call a method of the alleged object. Otherwise an ugly Perl error
may occur as a result of trying to use a non-object item as an object. See section
6.1.8.

4.4 Error reporting

4.4.1 Some philosophy

In a perfect world, errors tell the user or programmer what should be fixed. In the
world where programmers rule, error messages don’t exist at all, or they say what
went wrong, which doesn’t necessarily say anything about what should be fixed.

Eobj is intended to be an environment in which the code of many different people runs
together. For this reason, it is important to supply the programmer with a variety of
options to report that something is wrong, in a way that reflects the severeness of the
error and also gives the reader of the error as much help as possible.

To begin with: die and warn should never be used within Eobj . Instead, other func-
tions are supplied as follows. These functions can be used exactly in the way that die
and warn would be used, both in the “main script” and in class definitions.

A Guide to Eobj 24

Eli Billauer elib@flextronics.co.il

In particular: Unless the error message ends with a newline (\n), the line number on
which the function was called will be appended to the error message.

The debug interface will hopefully develop way beyond this. But while writing both
scripts and classes, it’s compulsory to use the following functions for diagnostic re-
porting.

4.4.2 The list of functions

• blow() – This is similar to die(), and should be used when the scripts seem
to be OK, but some unrecoverble error occured (such as failing to open a file).
The error message should make sense to a user knowing nothing about the
internals.

• puke() – This will work like blow(), but will also present a hopefully concise call
stack dump. The ugly name of this function reflects what the output looks like
and how graceful it is. To be used in reporting errors that occur only as a result
of a bug. When the system puke()s on you, the error comes from the guts of
the system. Accordingly, whoever will read the error message is expected to be
either disgusted or having a good knowledge of the internals.

• wiz() – Use this function to throw warnings that will most probably not be un-
derstood by anyone else than yourself and a handfull of people. Use this mainly
for testing your own class. These warning will be ignored in normal runs.

• wizreport() – This function should be used to detect conditions that you don’t
expect to happen, even after your class is in common use. Running this function
will dump a call stack trace into a report file, and ask the user to send it to you.
It still functions as a warning, so if execution must be stopped as a result of this
condition, a call to blow() should take place after this one.

• fishy() – Generates a warning like the one you’d expect to get during the Sanity
Check stage, but it may become before or after that stage. The contents of the
warning text should be clear to a non-Perl user.

• wrong() – Like fishy(), but will set a flag to abort code generation, or abort
immediately if in the middle of it. This is a way to report fatal conditions, and
give other objects a chance to file their complaints before halting.

• say() – This is for general logging. This is basically reporting what you’re doing,
if you think it can interest someone.

• hint() – Like say(), but meant for more verbose information. The intention is to
include information that may help debugging. It’s plausable that these messages
will be ignores unless the system is run in some verbose mode.

• wink() – This message is reserved for all of us who usually debug by putting
meaningless prints in our code to mark that some milestone has been crossed.
The messages will appear immeditely and visibly.

A Guide to Eobj 25

Eli Billauer elib@flextronics.co.il

4.4.3 “Hidden” classes

Some of the error-reporting classes mentioned above make a call stack dump. There
are cases, when we want to hide our class or package from this dump, in order to
avoid confusing data from appearing. This applies mainly for system packages, and
should not be used on “real” classes. If we want a class to be hidden from stack
dumps, we define a global variable with our $errorcrawl=’skip’, usually at the top
of the file. This is a summary of possible values for $errorcrawl:

• skip – Causes the current package (or class) to be invisible in stack dumps.
This was originally intended for the error-reporting package itself, so it wouldn’t
report its own internal calls.

• halt – Like skip, but applies also for any calls that the current class performed.
In other words, the current class, and any calls it made are invisible.

• system – This causes the error message to be shortened slightly, by omitting
the file name and line number, and saying “by System” instead. This is a slightly
arrogant way to tell the reader of the error message, that the call was indeed
performed, but it’s useless to try find the error there.

Note that cleaning the error trace is nice as long as the information isn’t needed,
but it’s very annoying if the error had to do with your code. Therefore, it is warmly
recommended to avoid this kind of tricks unless you’re absolutely confident about
your code, and if it really fits the category of “system code”.

4.5 Summary: How to write classes properly

This is a short checklist of things to keep in mind while writing a class in Eobj . There
is nothing here that isn’t mentioned elsewhere in this manual in detail.

• A class file should look like a clean list of subroutines. There should be nothing
outside the subroutine blocks.

• Declare all variables with my. Don’t use global variables.

• Use the global object where there is need for global variables.

• Always consider using the SUPER:: prefix to call the overridden method. Make
sure that all parameters are passed as is, unless intentionally doing otherwise.
Make sure that the name of the SUPER’ed method is the same as your own.

• Use blow(), puke() and wrong() as appropriate instead of die(). Use fishy()
and wiz() instead of warn(). In the error message, use $self -> who() to in-
dentify your own object, and $self -> safewho($other) for some other object.

A Guide to Eobj 26

Eli Billauer elib@flextronics.co.il

• Don’t use direct subroutine calls, but method calls with as in $self ->
method().

• Access properties only with the standard methods (get, set, const and the built-
in methods for list) or methods that make use of these. Never attempt to use the
object as a hash.

• Be strict about the Eobj conventions. Always assume that your class must be
able to work with other people’s classes. Make no shortcuts.

A Guide to Eobj 27

Eli Billauer elib@flextronics.co.il

5 Eobj main script API

5.1 Exported subroutines

5.1.1 The exported subroutine init()

Synopsis:
init;

Syntax:
init;

Description:
init must be executed before objects are created, and after the class tree is defined
by using inherit, override and underride.
The routine sets up the global object and other environmental items.

Return value:
Not to be used

Example:
See the example in section 5.1.2

5.1.2 The exported subroutine inherit()

Synopsis:
inherit(’myclass’, ’myclass.pl’, ’root’);

Syntax:
inherit(name of new class, Perl file, class to inherit);

Description:
The inherit routine registers a new class into the class tree. This registration includes
giving the name of the new class, the Perl file which includes the class’ methods, and
the class from which methods will be inherited.
The Perl file is not read during the execution of inherit, nor is there need for the class
to inherit to be declared when the call to inherit is performed. inherit only verifies
that the class that is declared doesn’t exist already, and that the third argument is

A Guide to Eobj 28

Eli Billauer elib@flextronics.co.il

given.
A detailed description of class declaration is given in section 4.2.1.

Return value:
Always returns 1

Example:

use Eobj;

inherit(’class_a’, ’myclass_a.pl’, ’root’);
inherit(’class_b’, ’myclass_b.pl’, ’class_a’);

init;

print "--- Now playing with object A --\n";
$objA = class_a -> new(name => ’AObject’);
$objA -> Asayhello();
$objA -> benice();

print "--- Now playing with object B --\n";
$objB = class_b -> new(name => ’BObject’);
$objB -> Asayhello();
$objB -> Bsayhello();
$objB -> benice();

We assume that the file myclass a.pl is:

sub Asayhello {
my $self = shift;
print "This is class A as ".$self->who()." saying hello\n";

}

sub benice {
my $self = shift;
$self -> SUPER::benice(@_);
print "This is class A saying hello after being nice\n";

}

and myclass b.pl is

sub Bsayhello {
my $self = shift;
print "This is class B as ".$self->who()." saying hello\n";

}

sub benice {

A Guide to Eobj 29

Eli Billauer elib@flextronics.co.il

my $self = shift;
$self -> SUPER::benice(@_);
print "This is class B saying hello after being nice\n";

}

The script will thus print out:

--- Now playing with object A --
This is class A as object ’AObject’ saying hello
This is class A saying hello after being nice
--- Now playing with object B --
This is class A as object ’BObject’ saying hello
This is class B as object ’BObject’ saying hello
This is class A saying hello after being nice
This is class B saying hello after being nice

We note that since class B inherited methods from class A, we could call both
Asayhello() and Bsayhello() on object B. Furthermore, when calling the method
benice() on object B, class A’s benice() was called as well by virtue of $self ->
SUPER::benice(@).

5.1.3 The exported subroutine override()

Synopsis:
override(’theclass’, ’myclass.pl’);
override(’theclass’, ’myclass.pl’, ’root’);

Syntax:
override(name of class, Perl file[, class to inherit]);

Description:
override causes the given Perl file’s method declarations to override those of the
already declared class. Note that unlike common practice in object-oriented program-
ming, this allows to override particular methods without changing the class’ name,
despite the fact that strictly speaking, this operation generates a new class.
If the class, which is named in the first argument doesn’t exist, override behaves
exactly like inherit, and thus a third argument is needed. This third argument is
optional, and functions as a “backup” in case the desired class does not exist, and
hence needs to be generated with inherit.
A detailed description of class declaration is given in section 4.2.1.

Return value:
Always returns 1

Example:

A Guide to Eobj 30

Eli Billauer elib@flextronics.co.il

use Eobj;

inherit(’class_a’, ’myclass_a.pl’, ’root’);
override(’root’, ’myclass_b.pl’);

init;

$objA = class_a -> new(name => ’AObject’);
$objA -> Asayhello();
$objA -> Bsayhello();
$objA -> benice();

We assume that the files myclass a.pl and myclass b.pl are the same as in the
example for inherit in section 5.1.2. This will print out:

This is class A as object ’AObject’ saying hello
This is class B as object ’AObject’ saying hello
This is class B saying hello after being nice
This is class A saying hello after being nice

This example shows an override of the root class, which will affect all classes in the
system. It’s usually not necessary to go that deep down.
Note that the root class was overridden after the declaration of class a, and still
class a inherited the methods from myclass b.pl via the inheritence from the root
class.

5.1.4 The exported subroutine underride()

Synopsis:
underride(’theclass’, ’myclass.pl’);

Syntax:
underride(name of class, Perl file);

Description:
underride works like override, only in the opposite way: It will give the Perl file’s
method the lowest predecense in the inheritence chain. In other words, the class tree
will be set up like it would if the current Perl file was the one that generated the class,
and all other declarations of the same class came afterwards as override()s.
If another underride() is called twice on the same class, the second one will be
closer to the root class.
This routine is merely intended for debugging purposes, and is not recommended for
standard use.
A detailed description of class declaration is given in section 4.2.1.

A Guide to Eobj 31

Eli Billauer elib@flextronics.co.il

Return value:
Always returns 1

5.1.5 The exported subroutine definedclass()

Synopsis:
$status = definedclass(’class’);

Syntax:
class status = definedclass(class name);

Description:
definedclass accepts a class name as argument, and returns a value that reflects
the class’ status.
A detailed description of class declaration is given in section 4.2.

Return value:
definedclass returns 0 if the class has not been defined. 1 is returned if the class is
defined, but its Perl code has not been loaded. 2 is returned if the class is defined,
and the Perl code has been loaded.

Example:

use Eobj;

print "In the beginning, the status was ".definedclass(’class_a’)."\n";

inherit(’class_a’, ’myclass_a.pl’, ’root’);
print "Afterwards, the status was ".definedclass(’class_a’)."\n";

init;
print "After init the status was ".definedclass(’class_a’)."\n";

$obj = class_a -> new(name => ’TheObject’);
print "After usage the status was ".definedclass(’class_a’)."\n";

This will print:

In the beginning, the status was 0
Afterwards, the status was 1
After init the status was 1
After usage the status was 2

Note that the status remained 1 even after init: The class’ Perl code was read only
when an object was generated from the class.

A Guide to Eobj 32

Eli Billauer elib@flextronics.co.il

5.1.6 The exported subroutine globalobj()

Synopsis:
$GlobObj = globalobj;

Syntax:
object reference = globalobj;

Description:
globalobj returns an object reference to the global object. It must not be called before
init(), since the global object doesn’t exist before that.
More information about the global object is given in section 3.4.4.

Return value:
A reference to the global object.

5.2 The global variables

5.2.1 The variable $VERSION

Description:
The variable $VERSION is the version number. It is declared as is commonly done in
Perl modules. Note that it can be used as a number.

Example:

use Eobj;

if ($Eobj::VERSION < 1.00) {
print "We are running on a pre-release version!\n";

}

5.2.2 The variable $globalobject

Description:
A reference to the global object is stored in $Eobj::globalobject. The value of this
variable is returned when calling the globalobj() routine.

5.2.3 The variable %classes

Description:
This hash’s keys are names of classes. To be more accurate, these are the names
of the Perl packages that will be generated during the loading of class Perl files. The

A Guide to Eobj 33

Eli Billauer elib@flextronics.co.il

values are either references to lists, or the scalar value 1. The latter signifies that the
class has been loaded (definedclass would return 2).
When the value is a reference to a list, it is a list of three items: The first item is the
name of the Perl file associated with the class. The second is the class which the
current class should be derived from (in other words, the value of this class’ @ISA).
The last item is the class name that was used when creating this class. It may be
different from the package name due to class override.

5.2.4 The variable %objects

Description:
This hash links between object names and their references. The keys are names of
objects, and the values are their references.

A Guide to Eobj 34

Eli Billauer elib@flextronics.co.il

6 The root class API

6.1 Methods

6.1.1 The method new()

Synopsis:
$theobj = theclass -> new(name=>’thename’);

Syntax:
class -> new(property hash);

Description:
The new method creates a new object of a given class. Its initial properties are passed
as a hash.
The new method must be called with at least one property, the name property set.
The value of name property must be different from that of any other previously created
object, even when making case-insensitive comparison.

Return value:
A reference (“handle”) to the new object.

Example:

use Eobj;
init;
$obj1=root->new(name=>’theObject’);

Note that that parent is assigned $obj1, and not the parent’s name.

6.1.2 The method set()

Synopsis:
$obj->set($property, $scalar);
$obj->set($property, @list);
$obj->set(\@path, $scalar);
$obj->set(\@path, @list);

A Guide to Eobj 35

Eli Billauer elib@flextronics.co.il

Syntax:
object -> set(property, new value);

Description:
The set method sets the value of a property. If property needs not to exist prior to
calling set, but it must not have been created by const (see section 6.1.4).
The value is in general a list. Scalars are handled as lists with a single item. Even so,
the set and get pair can be used with scalars in a straightforward way, as is shown in
the example of section 6.1.3.
To delete a property, set it to undef.
If the property name is a reference to a list, this is considered as the property’s path.
Note that paths are easily expressed with square brackets, [and] (see example).
Paths and their rules are described in section 3.3.7.

Return value:
Always returns 1

Example:
See the example in section 6.1.3

6.1.3 The method get()

Synopsis:
$scalar=$obj->get($property);
@list=$obj->get($property);
$scalar=$obj->get(\@path);
@list=$obj->get(\@path);

Syntax:
object -> get(property);

Description:
The get method looks for the required property, and returns its value if it exists.
If the property name is a reference to a list, this is considered as the property’s path.
Note that paths are easily expressed with square brackets, [and] (see example).
Paths and their rules are described in section 3.3.7.
The get property is suitable for reading properties defined by set and const.
The set and get pair are coordinated in such a way, that the programmer can assign a
list, a scalar or a hash to a property, and get the value later on in the easiest possible
way. This is best explained in the example that follows, but the formal rules are hereby
described for the sake of formality:
In scalar context: The first element in the list is returned. If a scalar was used to set
the property, this arrangement makes sure that get returns what set (or const) got.
If the property wasn’t defined, undef is returned.
In list context: A list is returned. If the property wasn’t defined, it’s an empty list.

A Guide to Eobj 36

Eli Billauer elib@flextronics.co.il

Note that if the property contains a list, and get is evaluated in a scalar context, it
does NOT return the number of elements, like some Perl programmers would expect.

Return value:
The value of the requested property.

Example:

use Eobj;
init;
$object=root->new(name=>’theObject’,

foo => ’bar’);
print "My name is ".$object->get(’name’)."\n";
print "Foo is ".$object->get(’foo’)."\n";

$object->set(’myscalar’, ’scalarvalue’);
$value = $object->get(’myscalar’);
print "My scalar is $value\n";
print "My scalar as a list: ".join(",", $object->get(’myscalar’))."\n";

$object->set(’mylist’, ’listitem1’, ’listitem2’, ’listitem3’);
@listvalue=$object->get(’mylist’);
print "My list is ".join(",", @listvalue)."\n";
print "My list (scalar context!): ".$object->get(’mylist’)."\n";

@thelist=(1, 2, 3);
$object->set(’one_two_three’, @thelist);
print "Let’s count: ".join(",", $object->get(’one_two_three’))."\n";

$object->set([’my’, ’node’], "This is my node");
$object->set([’my’, ’other’], "This is another node");
print "My node: ".$object->get([’my’, ’node’])."\n";
print "My other: ".$object->get([’my’, ’other’])."\n";

This script prints out the following:

My name is theObject
Foo is bar
My scalar is scalarvalue
My scalar as a list: scalarvalue
My list is listitem1,listitem2,listitem3
My list (scalar context!): listitem1
Let’s count: 1,2,3
My node: This is my node
My other: This is another node

A Guide to Eobj 37

Eli Billauer elib@flextronics.co.il

6.1.4 The method const()

Synopsis:
$obj->const($property, $scalar);
$obj->const($property, @list);
$obj->const(\@path, $scalar);
$obj->const(\@path, @list);

Syntax:
object -> const(property, scalar value);

Description:
The const method is exactly like set (see section 6.1.2), only it sets the value of a
property as a constant. If the property already exists, the new value value must be
equal (stringwise, in the Perl eq sense) to the value that the property already has. The
sense of equality may be changed from stringwise eq to any arbitrary sense by using
the seteq method detailed in section 6.1.13.
When dealing with lists, equality means equality in the number of element in the list
and that each element is stringwise equal (or as chosen with seteq).
Either way, the previous value, if assigned, must have been set by const (and not
set).
If the above conditions are not met, a fatal error occurs.
Setting a constant value may trigger off a callback mechanism. See section 6.1.12.
For more information about the constant property, see section 3.3.5.
If the property name is a reference to a list, this is considered as the property’s path.
Note that paths are easily expressed with square brackets, [and] (see example).
Paths and their rules are described in section 3.3.7.

Return value:
Not to be used.

Example:
use Eobj;
init;
$object=root->new(name=>’theObject’);

$object->const(’myconstant’, ’Stay Forever’);
$value = $object->get(’myconstant’);
print "I say $value\n";

$object->const(’myconstant’, ’Stay Forever’); # This is OK
$object->set(’myconstant’, ’Stay Forever’); # This is an error
$object->const(’myconstant’, ’Change!’); # This is an error

$object->set(’myscalar’, ’I am not a constant’);
$object->const(’myscalar’, ’I am not a constant’); # Error again!

A Guide to Eobj 38

Eli Billauer elib@flextronics.co.il

This will result in

I say Stay Forever

and then an error will be reported, because of the attempt to use set on a constant
value (it doesn’t matter that the value would be the same).
The example shows other possible mistakes: Trying to change the value of
myconstant, or using const on a property that is already assigned with set.

6.1.5 The method globalobj()

Synopsis:
$theglobal = $anyobject -> globalobj();

Syntax:
object -> globalobj();

Description:
The globalobj method returns a handle to the global object of the system. The
return value is identical for any object that is an instantiation of a class derived from
root, without having this method overrides. In simple words, it doesn’t matter which
object you run this method on, as long as it’s supported.
The purpose of this method is to allow an easy access to the global object from within
subroutines that define methods. From the main script, simply use the globalobj()
routine.
See section 3.4.4 for details about the global object.

Return value:
A reference (“handle”) to the global object

Example:

use Eobj;
init;
$object=root->new(name=>’theObject’);

$theglobal = $object->globalobj();
print "The object’s name is ".$theglobal->get(’name’)."\n";

$shortcut = globalobj();

Note that $shortcut will have the same value as $theglobal. This shorter format is
only possible because of use Eobj, and hence it can’t be used in class declarations.

A Guide to Eobj 39

Eli Billauer elib@flextronics.co.il

6.1.6 The method who()

Synopsis:
print "This is ".$object->who."\n";

Syntax:
object -> who();

Description:
The who method returns a short and concise identification of the object, so it is readily
recognized by humans. It is commonly used in error messages and alike.
Classes that are derived from root often override this method to give a better descrip-
tion. The object’s name is always mentioned somehow by convention.
Note that by using who, we ask the object for some information, so we assume that
$object (in the synopsis) is a proper object reference. This is assumption should
be avoided, especially when handling error messages, due the unexpected nature of
errors. See safewho in section 6.1.7 for a solution.

Return value:
A short identifier of the object, helpful for humans.

Example:

use Eobj;
init;
$object = root->new(name=>’theObject’);

print "This is ".$object->who."\n";

Running this:

This is object ’theObject’

6.1.7 The method safewho()

Synopsis:
print "This is ".$safeobject->safewho($object)."\n";

Syntax:
object -> who(object in question);

Description:
safewho calls who on the object that is passed as an argument, after verifying (using
isobject) that the object reference is proper.
This is especially useful in code that define methods, since we know for sure that the

A Guide to Eobj 40

Eli Billauer elib@flextronics.co.il

object’s self reference is proper. We may thus call ourself with the safewho method,
when attempting to identify another object.

Return value:
Same as who if the argument is a proper object. Otherwise, the string ’(non-object
item)’ is returned.

Example:

use Eobj;
init;
$object = root->new(name=>’theObject’);
$safeobject = root->new(name=>’ImSafe’);
$junk = "Hello";

print "This is ".$safeobject->safewho($object)."\n";
print "What is this??? ".$safeobject->safewho($junk)."\n";

Running this:

This is object ’theObject’
What is this??? (non-object item)

Note that trying $junk->who would cause a Perl error, that would be quite unhelpful.

6.1.8 The method isobject()

Synopsis:
if (isobject($obj)) { ... }

Syntax:
object -> isobject(scalar);

Description:
isobject identifies if its scalar argument is a Eobj object. This method is useful before
attempting to call an object’s method with an arrow notation (“->”). The method’s
result does not depend on whose object it is a method of. Only scalar in the argument
matters (unless the method has been overridden, which it shouldn’t).
Note that if an object has been created outside the Eobj mechanism, isobject will
return false even though it’s OK to use the argument as an object.

Return value:
True (1) or undefined value (undef).

Example:

use Eobj;

A Guide to Eobj 41

Eli Billauer elib@flextronics.co.il

init;
$object = root->new(name=>’theObject’);

print "Is the handle an object? ".globalobj()->isobject($object)."\n";
print "Is the name an object? ".globalobj()->isobject(’theObject’)."\n";
print "Can I check myself? ".$object->isobject($object)."\n";

Note that we use globalobj() just to get some object to call isobject on.
Running this we get:

Is the handle an object? 1
Is the name an object? 0
Can I check myself? 1

Also note that we got 0 when passing the object’s name as an argument. The method
will always return 0 to any string it gets.

6.1.9 The method objbyname()

Synopsis:
$obj -> objbyname(’theObject’);

Syntax:
object -> objbyname(name of object);

Description:
objbyname() returns the handle (reference) to the object whose name is given as an
argument. If no such object exists, undef is returned.

Return value:
A reference to an object or undef.

Example:

use Eobj;
init;
$object = root->new(name=>’theObject’);

$same = globalobj->objbyname(’theObject’);

print("The same object!\n")
if ($object == $same);

Description:
In this example, we create a new object, and puts its handle in $object. Then we get
the same value by using objbyname() on the object’s name, and put it in $same (which

A Guide to Eobj 42

Eli Billauer elib@flextronics.co.il

is useless for practical reasons, since we’ve already have the reference of the objects
handy). Note that we use the global object, like we would if we had no other reference
to an object handy.

When running this script, the print is executed.

6.1.10 The method objdump()

Synopsis:
$obj -> objdump;
$obj -> objdump(’theObject’);
$obj -> objdump($objref);

Syntax:
object -> objbyname();
object -> objbyname(list of names or references of objects);

Description:
objdump() is intended for debugging. It prints out information (to the standard output)
about either a specific object, or all the objects that are defined in the system.

If a list of objects is given (this includes one object) as argument, these objects’ infor-
mation is printed out, which includes the properties.

The objects may be identified by their name or reference interchangably.

If objdump() is called with no arguments, all objects in the system are showed in the
order that they were created.

The output format is intended for human reading, and is thus presented in what seems
to be an easy way to read, with less emphasis on formal rules.

Return value:
Not to be used.

Example:

use Eobj;
init;
$object = root->new(name=>’theObject’);

globalobj->objdump($object); # Will show ’theObject’
globalobj->objdump(’theObject’); # ’theObject’ again
$object->objdump(globalobj); # Will show global object!
globalobj->objdump(); # Will show them all

A Guide to Eobj 43

Eli Billauer elib@flextronics.co.il

6.1.11 The method suggestname()

Synopsis:
$safename = $obj->suggestname($IWantThis);
$obj = AnyClass->new(name => $safename);

Syntax:
object -> suggestname(desired name)

Description:
suggestname() will check the given string against the names of already existing ob-
jects. If the name is OK for a new object, it will simply return the string. If a new object
can’t be named with the given string, it is altered lightly (see example). Either way,
the returned string is a legal name for a new object, which will be close enough to the
original.
Note, that suggestname may suggest the same name more than once, if it isn’t used
to create a new object – it checks uniqueness against existing objects, not its own
suggestions.

Return value:
A string with a name for a new object.

Example:

use Eobj;
init;
$global = globalobj();
$name1 = $global -> suggestname(’theObject’);
$object = root->new(name => $name1);
print "The first object was called $name1\n";

$name2 = $global -> suggestname(’THEOBJECT’);
$object = root->new(name => $name2);
print "The next object was called $name2\n";

$name3 = $global -> suggestname(’theobject’);
print "Now we were suggested the name $name3\n";
$name4 = $global -> suggestname(’theobject’);
print "We didn’t use it, so we got $name4 again\n";

$name5 = $global -> suggestname(’theobjects’);
print "We added one ’s’, and got $name5 -- it’s unique\n";

We run this:

The first object was called theObject
The next object was called THEOBJECT_1

A Guide to Eobj 44

Eli Billauer elib@flextronics.co.il

Now we were suggested the name theobject_2
We didn’t use it, so we got theobject_2 again
We added one ’s’, and got theobjects -- it’s unique

6.1.12 The method addmagic()

Synopsis:
$object->addmagic($property, \&callback);
$object->addmagic($property, sub { ... });
$object->addmagic(\@path, \&callback);
$object->addmagic(\@path, sub { ... });

Syntax:
object -> addmagic(property, subroutine reference);

Description:
The addmagic method queues a callback subroutine, which will be called upon when
the respective property is assigned a value by using const. If The property’s value is
already set, the subroutine will be called immediately.
If the property name is a reference to a list, this is considered as the property’s path.
Paths and their rules are described in section 3.3.7.
addmagic is loop-safe: The callback mechanism assures that infinite callback loops
will not occur. This is done by removing each callback entry from the queue before
performing the callback itself, so each callback entry is run at most once. In particular,
the callback subroutine may include a call to the const of another object, which may
trigger off another callback. In fact, this is the intended use of addmagic (see exam-
ples).
Using addmagic and callback subroutines requires an understanding of the scope un-
der which the subroutines are run (that is, when variables are evaluated, and what
variable space is applied). A lack of such understanding may lead to strange bugs.
We shall address a few of the issues in the examples below.

Return value:
Not to be used.

Example:

use Eobj;
init;
$object1 = root->new(name=>’First’);
$object2 = root->new(name=>’Second’);

$copy1to2 = sub {
print "Callback to copy1to2\n";
my $val = $object1 -> get(’TheProperty’);
$object2 -> const(’TheProperty’, $val);

A Guide to Eobj 45

Eli Billauer elib@flextronics.co.il

};

$copy2to1 = sub {
print "Callback to copy2to1\n";
my $val = $object2 -> get(’TheProperty’);
$object1 -> const(’TheProperty’, $val);

};

$object1->addmagic(’TheProperty’, $copy1to2);
$object2->addmagic(’TheProperty’, $copy2to1);

$object1->const(’TheProperty’, ’TheValue’);
print "The value is ".$object2->get(’TheProperty’)."\n";

And when running this, we get:

Callback to copy1to2
Callback to copy2to1
The value is TheValue

The heart of this example is that we ran const on $object1, but read the property of
$object2. This demonstrates how one object can “learn” the value of another one as
soon as it is set.
We see that by calling const on $object1 triggered off the callback to copy1to2. In
copy1to2 there’s const is called on $object2, and thus copy2to1 is triggered off. In
copy2to1 we call const on $object1 again, on a constant property that already has a
value. This is OK, since we attempt to assign the same value that the property already
has.
No more callbacks take place, since we’ve exhausted the queues. Note that each of
the two objects watch the other. We could have ran const on $object2, and read it
from $object1 as well. In fact, this callback setup assures that both object’s properties
will be equal, both by copying the value, and by not allowing unequal values to be set.
In the example above, the subroutines could have been defined as sub copy1to2
{ ... } (and not $copy1to2 = sub { ... }), achieving the same results for this
specific example. (In this case \©1to2 would be given to addmagic, rather than
$copy1to2). Even so, it’s still higly recommended to follow the example’s subroutine
definition format, in order to assure the correct scoping. This is especially important if
the subroutines are defined as part of some method routine.
We now see another example, which demonstrates a variable scoping issue. Suppose
that we want 10 objects, whose property X is equal on all:

use Eobj;
init;
@l=();
for ($i=0; $i<10; $i++) {
$l[$i]=root->new(name=>’MyName’.$i);

A Guide to Eobj 46

Eli Billauer elib@flextronics.co.il

my $j=$i;
if ($l[$j+1]) {
$l[$j]->addmagic(’X’,

sub { $l[$j+1]->const(’X’, $l[$j]->get(’X’)); });
}
if ($l[$j-1]) {
$l[$j]->addmagic(’X’,

sub { $l[$j-1]->const(’X’, $l[$j]->get(’X’)); });
}

}

print "Before, the value is ’".$l[3]->get(’X’)."’\n";
$l[8]->const(’X’, ’what we want’);
print "After, the value is ’".$l[3]->get(’X’)."’\n";

Running this, we get:

Before, the value is ’’
After, the value is ’what we want’

In this example, we pass an anonymous subroutine (sub {...}) to addmagic. It is
important to note, that even though the loop index is $i, we create a copy of it, my
$j=$i; and use it within the callback.
The reason for this, is that the variables in the subroutine are evaluated only upon
execution, but the values are those that the variables have at the moment of execution.
Thus, we couldn’t use $i in the callback subroutine, because it would have the value
10 (the final value) for all subroutines. By making a “local copy” with my, within a Perl
block, we get the right $j for each callback.
This example may be confusing, but it shown the importance of knowing the scoping
issue well.

6.1.13 The method seteq()

Synopsis:
$object->seteq($property, \&compare);
$object->seteq($property, sub { ... });
$object->seteq(\@path, \&compare);
$object->seteq(\@path, sub { ... });

Syntax:
object -> seteq(property, subroutine reference);

Description:

A Guide to Eobj 47

Eli Billauer elib@flextronics.co.il

seteq changes the meaning of equalilty for a certain property. This meaning is
effective when const is used on a property that already has a value, which is when
const verifies that the new value and the old one are “the same”. The exact meaning
of being “the same” is given by the argument to seteq, which is a reference to a
comparing subroutine.
The comparing subroutine shall accept two arguments, and return 1 if the arguments
are “the same” in the relevant sense, 0 otherwise.
const does not update the propery nor run callbacks when executed on a property
that has a value, even if it is considered equal. If the property needs to be updated,
the use of constant properties should be reconsidered.
By default, stringwise eq is used to compare the value given to const, as if
seteq($property, sub {return shift eq shift;}) had been run on every prop-
erty.
If the property name is a reference to a list, this is considered as the property’s path.
Paths and their rules are described in section 3.3.7.

Return value:
Not to be used.

Example:

use Eobj;
init;
$object = root->new(name=>’theObject’);

$object -> seteq(’theProperty’, \&ignorecase);

$object -> const(’theProperty’, ’THEVALUE’);

#The next line would cause an error if it wasn’t for seteq above
$object -> const(’theProperty’, ’thevalue’);

print "The value is ".$object->get(’theProperty’)."\n";

sub ignorecase {
my ($a, $b) = @_;
return (lc($a) eq lc($b));

}

Running, this:

The value is THEVALUE

In this example, we make the comparison case-insensitive by applying the subroutine
ignorecase on seteq. Unlike addmagic (see section 6.1.12), it’s proper to use named
subroutines (defined as sub ignorecase { ... }), since the result of the subroutine

A Guide to Eobj 48

Eli Billauer elib@flextronics.co.il

depends only on its arguments, and hence scoping issues are irrelevant.
We can see that the value of the property did not change, but no error was reported.

6.1.14 The method pshift()

Synopsis:
$scalar=$obj->pshift($property);
$scalar=$obj->pshift(\@path);

Syntax:
object -> pshift(property);

Description:
pshift treats the given property as a list, and performs a Perl shift operation on
that list: It removes the first item of the list, and returns its value. If the property is
undefined, or it’s an empty list, undef is returned.
The property must not have been defined with const.
If the property name is a reference to a list, this is considered as the property’s path.
Paths and their rules are described in section 3.3.7.

Return value:
Same as Perl’s shift on a list.

Example:
See the example in section 6.1.17

6.1.15 The method ppop()

Synopsis:
$scalar=$obj->ppop($property);
$scalar=$obj->ppop(\@path);

Syntax:
object -> ppop(property);

Description:
ppop treats the given property as a list, and performs a Perl pop operation on that list:
It removes the last item of the list, and returns its value. If the property is undefined,
or it’s an empty list, undef is returned.
The property must not have been defined with const.
If the property name is a reference to a list, this is considered as the property’s path.
Paths and their rules are described in section 3.3.7.

Return value:

A Guide to Eobj 49

Eli Billauer elib@flextronics.co.il

Same as Perl’s pop on a list.

Example:
See the example in section 6.1.17

6.1.16 The method punshift()

Synopsis:
$obj->punshift($property, $scalar);
$obj->punshift($property, @list);
$obj->punshift(\@path, $scalar);
$obj->punshift(\@path, @list);

Syntax:
object -> punshift(property, list items);

Description:
punshift treats the given property as a list, and performs a Perl unshift operation on
that list: It adds the given items at the beginning of the list. If the property is undefined,
it is created with set.
The property must not have been defined with const.
If the property name is a reference to a list, this is considered as the property’s path.
Paths and their rules are described in section 3.3.7.

Return value:
Not to be used.

Example:
See the example in section 6.1.17

6.1.17 The method ppush()

Synopsis:
$obj->ppush($property, $scalar);
$obj->ppush($property, @list);
$obj->ppush(\@path, $scalar);
$obj->ppush(\@path, @list);

Syntax:
object -> ppush(property, list items);

Description:
ppush treats the given property as a list, and performs a Perl push operation on that
list: It adds the given items at the end of the list. If the property is undefined, it is
created with set.

A Guide to Eobj 50

Eli Billauer elib@flextronics.co.il

The property must not have been defined with const.
If the property name is a reference to a list, this is considered as the property’s path.
Paths and their rules are described in section 3.3.7.

Return value:
Not to be used.

Example:

use Eobj;
init;
$object = root->new(name=>’theObject’);

$object -> set(’myList’, 5, 6, 7, 8);

print "This is five: ".$object -> pshift(’myList’)."\n";
print "This is eight: ".$object -> ppop(’myList’)."\n";

$object -> punshift(’myList’, 1, 2);
$object -> ppush(’myList’, ’Finito!’);

print "My list is ".join(’, ’, $object -> get(’myList’))."\n";

Which prints when runned:

This is five: 5
This is eight: 8
My list is 1, 2, 6, 7, Finito!

6.1.18 The method prettyval()

Synopsis:
print "I have ".$self->prettyval(@things)."\n";

Syntax:
object -> prettyval(list);

Description:
prettyval() accepts items in a list, and returns a string with the items presented in
a way that humans understand. This should be used in error messages and similar
cases, when we want to present the value in a message.

prettyval() handles lists by printing a few of the first elements in parantheses. What
appears to be non-numerical strings is enclosed with quote marks. Object references
are translated into their who() representation, enclosed in curled brackets.

A Guide to Eobj 51

Eli Billauer elib@flextronics.co.il

This method may be used in conjunction with linebreak() in order to handle long
lines.

Return value:
A well-formatted string

Example:
See the example in section 6.1.19

6.1.19 The method linebreak()

Synopsis:
print $self->linebreak($A long string);
print $self->linebreak($A long string, ’ ’);

Syntax:
object -> linebreak(string[, indent string]);

Description:
The linebreak() method searches the string for lines that are over 80 characters in
length (newline to newline), and attempts to cut them wisely by adding newlines.

If a second argument is given, that string will be put after each newline that is inserted.
If the string is a few whitespaces, this will turn out to be the indentation of each line
break that the method creates.

With “newline” we mean a Perl \n.

Return value:
A (hopefully) better formatted string

Example:

use Eobj;
init;
$object = root->new(name=>’theObject’);

@thelist = (’Foo’, 5, $object, globalobj(), ’Bar’, ’FooBar’);

print globalobj->linebreak("I don’t know what to do with ".
globalobj->prettyval(@thelist)."\n");

This will print out:

I don’t know what to do with (’Foo’, 5, {object ’theObject’},
{The Global Object}, ...)

Note that the line break before the forth element is a result of the linebreak()
method. We can also see that only the first four elements were actually displayed.

A Guide to Eobj 52

Eli Billauer elib@flextronics.co.il

The rest are chopped out.

6.2 Properties

6.2.1 The property name

Description:
The name property is a unique ASCII identifier of the object. It must be set when
creating a new object.
The first character of the property string must be an underscore or a letter (upper case
or lower case). The rest of the string must match \w* (as a Perl regular expression).
MyName, Hello 9, and underscored are legal names. 2good, -myname, %Name and
/slash are illegal.
The name property must be unique in a case-insenstive sense.
See 6.1.1 and 6.1.11 for more details.

A Guide to Eobj 53

Eli Billauer elib@flextronics.co.il

A GNU FDL license

GNU Free Documentation License
Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite
330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

A.0 PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document ”free” in the sense of freedom: to assure everyone the effective free-
dom to copy and redistribute it, with or without modifying it, either commercially or
noncommercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifica-
tions made by others.

This License is a kind of ”copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

A.1 APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The ”Document”, below,
refers to any such manual or work. Any member of the public is a licensee, and is

A Guide to Eobj 54

Eli Billauer elib@flextronics.co.il

addressed as ”you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A ”Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A ”Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Docu-
ment to the Document’s overall subject (or to related matters) and contains nothing
that could fall directly within that overall subject. (Thus, if the Document is in part
a textbook of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the subject or with
related matters, or of legal, commercial, philosophical, ethical or political position re-
garding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is
released under this License. If a section does not fit the above definition of Secondary
then it is not allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant Sections then there
are none.

The ”Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available draw-
ing editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An im-
age format is not Transparent if used for any substantial amount of text. A copy that is
not ”Transparent” is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or
PDF produced by some word processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such following

A Guide to Eobj 55

Eli Billauer elib@flextronics.co.il

pages as are needed to hold, legibly, the material this License requires to appear
in the title page. For works in formats which do not have any title page as such,
”Title Page” means the text near the most prominent appearance of the work’s title,
preceding the beginning of the body of the text.

A section ”Entitled XYZ” means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in an-
other language. (Here XYZ stands for a specific section name mentioned below, such
as ”Acknowledgements”, ”Dedications”, ”Endorsements”, or ”History”.) To ”Preserve
the Title” of such a section when you modify the Document means that it remains a
section ”Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

A.2 VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the
conditions in section A.3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

A.3 COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the

A Guide to Eobj 56

Eli Billauer elib@flextronics.co.il

first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a computer-network location from
which the general network-using public has access to download using public-standard
network protocols a complete Transparent copy of the Document, free of added ma-
terial. If you use the latter option, you must take reasonably prudent steps, when you
begin distribution of Opaque copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location until at least one year after the last
time you distribute an Opaque copy (directly or through your agents or retailers) of
that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

A.4 MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections A.2 and A.3 above, provided that you release the Modified Version under
precisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses
a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

A Guide to Eobj 57

Eli Billauer elib@flextronics.co.il

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled ”History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled ”History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
”History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of
the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled ”Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may
at your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled ”Endorsements”, provided it contains nothing but en-
dorsements of your Modified Version by various parties–for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already

A Guide to Eobj 58

Eli Billauer elib@flextronics.co.il

includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

A.5 COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section A.4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such sec-
tion unique by adding at the end of it, in parentheses, the name of the original author
or publisher of that section if known, or else a unique number. Make the same ad-
justment to the section titles in the list of Invariant Sections in the license notice of the
combined work.

In the combination, you must combine any sections Entitled ”History” in the various
original documents, forming one section Entitled ”History”; likewise combine any sec-
tions Entitled ”Acknowledgements”, and any sections Entitled ”Dedications”. You must
delete all sections Entitled ”Endorsements”.

A.6 COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted doc-
ument, and follow this License in all other respects regarding verbatim copying of that
document.

A Guide to Eobj 59

Eli Billauer elib@flextronics.co.il

A.7 AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an ”aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included an aggregate, this License does not apply to the other works
in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section A.3 is applicable to these copies of the Doc-
ument, then if the Document is less than one half of the entire aggregate, the Doc-
ument’s Cover Texts may be placed on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole aggregate.

A.8 TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section A.4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warrany Disclaimers, provided that you also
include the original English version of this License and the original versions of those
notices and disclaimers. In case of a disagreement between the translation and the
original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedications”, or ”His-
tory”, the requirement (section A.4) to Preserve its Title (section 1) will typically require
changing the actual title.

A.9 TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

A Guide to Eobj 60

Eli Billauer elib@flextronics.co.il

A.10 FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Docu-
ment specifies that a particular numbered version of this License ”or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

A Guide to Eobj 61

http://www.gnu.org/copyleft/

Eli Billauer elib@flextronics.co.il

B To Do

This section includes issues that are still to be done.

B.1 Core issues

B.1.1 AUTOLOAD caching

Change the AUTOLOAD mechanism, so it puts a subroutine in the namespace of
the caller for standard routines (error reporting and such). Then, enrich the group of
subroutines that are supported from anywhere (“exported”).

B.2 Complete the half-made

B.2.1 The error messages

Make the different error messages (puke, wiz, hint and so on) actually generate
some different things. Make wrong actually set flags and/or stop in time.

B.3 System management

B.3.1 Organizing classes

Define and implement means for an easy installation of new classes. For example,
search some path recursively for some certain filename pattern, and run the file as a
script during init. This will allow class enrichment easily, and the classes could be
loaded depending on some condition.

B.3.2 Run options

A means for defining the execution options (target device, debug modes and so on),
as well as holding it comfortably in the system is needed.

A Guide to Eobj 62

Eli Billauer elib@flextronics.co.il

B.4 User Interface

B.5 Debug tools

B.5.1 Error trace

Due to the complexity of the system, it is hard to give a concise error message. The
error may be detected an reported, but it says nothing about the reason for it. For
example, if a constant property gets a new value, it’s obviously an error, but it reported
at the attempt to change it, without saying anything about when and where the first
value got there.

This should be remedied as follows: The system should be able to run in a error-trace
mode, in which every call to distinguished methods (or all?) is logged, along with the
stack trace. This can be done by automatically overriding all or some of the classes
with envelope classes, which log every call and exit from methods. This can be helpful
for human reading, but even better, it can help to resolve what happened, and who
was trying to do what.

This error-trace mode will be slower, but it allows a rerun when something goes wrong
(which could be done automatically by a wrapper such as a GUI tool).

B.5.2 All class loader

This general function is useful to verify that all declared classes are indeed OK. This
would mean “load classes now”.

A Guide to Eobj 63

	Introduction
	Eobj in a nutshell
	What is Eobj ?

	About the project
	About the author
	Acknowledgements
	This guide's outline

	Writing main scripts
	How it all works
	The init() call

	Eobj objects
	Background
	An example
	Properties
	What it looks like
	The basics
	Property names
	Undefs and empty lists
	More about constant properties
	``Magic'' callbacks
	The property path
	Methods for lists

	Creating and using objects
	The formalilties
	An example
	Property paths in new
	The global object

	The object dumper

	Eobj classes
	How this section is organized
	Classes and inheritance
	Source files and classes
	The phases of the object system
	Class definition
	``Normal'' methods
	Methods overriding new
	The autoloading mechanism
	Eobj objects vs. plain Perl objects

	Useful methods
	Error reporting
	Some philosophy
	The list of functions
	``Hidden'' classes

	Summary: How to write classes properly

	Eobj main script API
	Exported subroutines
	The exported subroutine init()
	The exported subroutine inherit()
	The exported subroutine override()
	The exported subroutine underride()
	The exported subroutine definedclass()
	The exported subroutine globalobj()

	The global variables
	The variable $VERSION
	The variable $globalobject
	The variable %classes
	The variable %objects

	The root class API
	Methods
	The method new()
	The method set()
	The method get()
	The method const()
	The method globalobj()
	The method who()
	The method safewho()
	The method isobject()
	The method objbyname()
	The method objdump()
	The method suggestname()
	The method addmagic()
	The method seteq()
	The method pshift()
	The method ppop()
	The method punshift()
	The method ppush()
	The method prettyval()
	The method linebreak()

	Properties
	The property name

	GNU FDL license
	PREAMBLE
	APPLICABILITY AND DEFINITIONS
	VERBATIM COPYING
	COPYING IN QUANTITY
	MODIFICATIONS
	COMBINING DOCUMENTS
	COLLECTIONS OF DOCUMENTS
	AGGREGATION WITH INDEPENDENT WORKS
	TRANSLATION
	TERMINATION
	FUTURE REVISIONS OF THIS LICENSE

	To Do
	Core issues
	AUTOLOAD caching

	Complete the half-made
	The error messages

	System management
	Organizing classes
	Run options

	User Interface
	Debug tools
	Error trace
	All class loader

