The beamer-rl class

Salim Bou

Repository: https://github.com/seloumi/beamer-rl
Bug tracker: https://github.com/seloumi/beamer-rl/issues

October 4, 2019
Creating beamer presentation for right to left language (like arabic) using pdflatex or xelatex still poses many problems due to bugs not currently resolved especially for colors and hyperlinks.

The LuaTeX team set solutions for these issues thanks to them and to Javier Bezos for his works on the package babel and bidi writing.

This class provides patches of some beamer templates and commands for right to left presentation, this package call babel with bidi=basic-r option and require lualatex engine.
\documentclass{beamer-rl}
\babelprovide[import=ar-DZ, main]{arabic}
\babelfont{sf}{Amiri}

\mode<presentation>{{\usetheme{Warsaw}}}
\begin{document}
...
\end{document}
On 21 April 1820, during a lecture, Ørsted noticed a compass needle deflected from magnetic north when an electric current from a battery was switched on and off.
enumerate, itemize

\setbeamertemplate{itemize item}[triangle]

- first item
- second item
- third item

first item ▶
second item ▶
third item ▶

- first item
- second item
- third item
First item
Second item
Third item
First item
Second item
Third item
First item
Second item
Third item
Theorems

- The proof uses *reductio ad absurdum*

Theorem

There is no largest prime number

Proof

1. Suppose p were the largest prime number.
2. Let q be the product of the first p numbers.
3. Then $q + 1$ is not divisible by any of them.
4. But $q + 1$ is greater than 1, thus divisible by some prime number not in the first p numbers.
Theorem

There is no largest prime number.

Proof

1. Suppose p were the largest prime number.
2. Let q be the product of the first p numbers.
3. Then $q + 1$ is not divisible by any of them.
4. But $q + 1$ is greater than 1, thus divisible by some prime number not in the first p numbers.
The proof uses *reductio ad absurdum*.

Theorem
- There is no largest prime number.

Proof
1. Suppose p were the largest prime number.
2. Let q be the product of the first p numbers.
3. Then $q + 1$ is not divisible by any of them.

 But $q + 1$ is greater than 1, thus divisible by some prime number not in the first p numbers.
Theorems

- The proof uses *reductio ad absurdum*

Theorem

- There is no largest prime number

Proof

1. Suppose \(p \) were the largest prime number
2. Let \(q \) be the product of the first \(p \) numbers.
3. Then \(q + 1 \) is not divisible by any of them.
4. But \(q + 1 \) is greater than 1, thus divisible by some prime number not in the first \(p \) numbers.
\framezoom<1><2>[border=2](2cm,2cm)(2cm,2cm)\\pgfimage[height=5cm]{example-image}
mage
All options provided by beamer can be added with beamer-rl. Additional options can also be passed to package babel with beamer-rl like this:

\documentclass[babel={<babel options>}]{{beamer-rl}}

The beamer-rl class swap the definition of \blacktriangleright with \blacktriangleleft in RTL context.

<table>
<thead>
<tr>
<th></th>
<th>\blacktriangleright</th>
<th>\blacktriangleleft</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTR</td>
<td>▶</td>
<td>▶</td>
</tr>
<tr>
<td>RTL</td>
<td>▶ ▶</td>
<td>▶ ▶</td>
</tr>
</tbody>
</table>

In some cases you need to use \babelsublrr command from bebel package to insert a left to right text within your right to left text, e.g. if you need to insert a pspicture drawing in RTL context.