Theorem 1 (Residue Theorem) Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots
\]

The first equality is a consequence of the fundamental multi-valued function theorem.

\[\text{calligraphic}: \quad ABCDEFGHIJKLMNOPQRSTUVWXYZ\]

\[\text{greek}: \quad \Gamma\Delta\Theta\Xi\Psi\Omega\]

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure \(p \) to accommodate findings that actual choice behaviours often differ systematically from those predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.

\[\text{test page: typeface=default (10pt)}\]
Theorem 1 (Residue Theorem) Let

\[\gamma \text{ is a closed rectifiable curve in } \mathbb{C} \text{ which does not pass through any of the points } a_k \text{ and if } \gamma \approx 0 \text{ in } \mathbb{C} \text{ then} \]

\[\frac{1}{2\pi i} \int_{\gamma} f(z) \, dz = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \]

(3.1)

calligraphic: \(\Gamma \Delta \Theta \Xi \Lambda \Xi \Omega \) greek: \(\alpha \beta \gamma \delta \epsilon \zeta \theta \delta \iota \kappa \lambda \mu \nu \xi \pi \rho \sigma \tau \varphi \chi \psi \)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schneider (1990), reconfigure \(p \) to accommodate findings that actual choice behaviours often differ systemically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hsufljord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hühnleffy, 2003). These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.

\[
\frac{1}{2\pi i} \int f = \sum_{k=1}^{\infty} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926\ldots
\]
These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time. By the standard rationality assumptions, the standard expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hübner, 2004) differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hübner, 2004). These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots$$

(3.1)

calligraphic: $\mathcal{A}\mathcal{B}\mathcal{C}\mathcal{D}\mathcal{E}\mathcal{F}\mathcal{G}\mathcal{H}\mathcal{I}\mathcal{J}\mathcal{K}\mathcal{L}\mathcal{M}\mathcal{N}\mathcal{O}\mathcal{P}\mathcal{Q}\mathcal{R}\mathcal{S}\mathcal{T}\mathcal{U}\mathcal{V}\mathcal{W}\mathcal{X}\mathcal{Y}\mathcal{Z}$
greek: $\Gamma\Delta\Theta\Lambda\Pi\Sigma\Upsilon\Phi\Omega$

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüffeld, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926\ldots$$

(3.1)

Calligraphic: \textit{ABCDEFGHIJKLMNOPQRSTUVWXYZ Ct St Th Ff Fi Fj Fl F}

Greek: \textit{ABCDEFGHIJKLMNOPQRSTUVWXYZ Ct St Th Ff Fi Fj Fl F}

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hufnagel, 2004). These theories accomplish their task in two interrelated ways: firstly by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k)$$

(3.1)

calligraphic: \textit{ABCDEFGHijklmnopqrstuvwxyz}

greek: \textit{Gamma,Delta,Epsilon,Zeta,Theta,Chi,Phi}

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Huffledjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_n. If y is a closed rectifiable curve in G which does not pass through any of the points a_k and if $y \neq 0$ in G then

$$\frac{1}{2\pi i} \int_G f = \sum_{k=1}^n n(y; a_k) \text{Res}(f; a_k) \quad \pi = 3.141592\ldots$$

(3.1)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schneider (1985), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hufflieford, 2004). These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.

$$\text{abcdgfhijklmnopqrstuvwxyz}$$

$$\text{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$$

$$\text{xgmnopqrsuvwxyz}$$

$$\text{abcdefgijklmopqrstuvwxyz}$$

$$\text{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$$

$$\text{abcdefghijklmnopqrstuvwxyz}$$
Theorem 1 (Residue Theorem) Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots
\]

[3.1]

calligraphic: \(ABCDEFGHIJKLMNOPQRSTUVWXYZ \)
greek: \(\Gamma\Delta\Theta\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega \)

Rank-dependent utility theories, introduced for objective probabilities by Quiggiv (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure \(p \) to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hülfejord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Test page: typeface=adfelectrum:lig (lopt)

typeface package options:

- **typeface**: adfelectrum:lig
- **fontencoding**: default (T1)
- **textfigures**: osf
- **inputencoding**: default (utf8)
- **sansfont**: default
- **textcomp**: default (full)
- **monotextfont**: default
- **fontloaderorder**: default
- **mathmathfont**: default
- **symbolsmathfont**: default
- **debug**: false

<table>
<thead>
<tr>
<th>Family</th>
<th>Typeface</th>
<th>\TeX\ Name</th>
<th>em size</th>
<th>ex size</th>
<th>scale</th>
<th>scale time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roman</td>
<td>ADF ElecTrum</td>
<td>yesrjwft</td>
<td>10.000pt</td>
<td>5.0000pt</td>
<td>1.0000</td>
<td>not scaled</td>
</tr>
<tr>
<td>Sans Serif</td>
<td>Default</td>
<td>eccs1000 at 11.250pt</td>
<td>11.250pt</td>
<td>5.0000pt</td>
<td>1.1253</td>
<td>load time</td>
</tr>
<tr>
<td>Typewriter</td>
<td>Default</td>
<td>ectl1000 at 11.6157pt</td>
<td>12.193pt</td>
<td>5.0000pt</td>
<td>1.1161</td>
<td>load time</td>
</tr>
<tr>
<td>Math</td>
<td>Default</td>
<td>cmr12 at11.61285pt</td>
<td>11.370pt</td>
<td>5.0000pt</td>
<td>1.1161</td>
<td>load time</td>
</tr>
<tr>
<td>Symbols</td>
<td>Default</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

'tm' family: ADF ElecTrum

Normal: abcd

Bold: abcd

Italic: abcd

Slant: abcd

Variants: Light Condensed Medium Semi-bold Bold Bold-extended Bold-SmallCaps Extra-bold

Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.141592 \ldots$$

Calligraphic: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Greek: \Gamma \Delta \Theta \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega

Rank-dependent utility theories, introduced for objective probabilities by Quiggin [1988; 1982] and for subjective distributions by Schmeidler [1987], reconfigure p to accommodate findings that actual choice behaviors often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Huflejt, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f(z) \, dz = \sum_{k=1}^{m} n(\gamma; a_k) \, \text{Res}(f; a_k) \quad \text{for} \quad \gamma \approx 0 \quad \text{in} \quad G \quad \text{and if} \quad n(\gamma; a_k) \neq 0 \quad \text{for} \quad k = 1, 2, \ldots, m.$$

(3.1)

calligraphic: $ABCD\, EF\, GH\, IJ\, KL\, MN\, NOP\, QR\, ST\, UV\, WXYZ$
greek: $\Gamma\Delta\Theta\Lambda\Xi\Sigma\Upsilon\Phi\Psi\Omega$ $\alpha\beta\gamma, \delta\varepsilon\zeta\eta\theta\iota\kappa, \lambda\mu\nu\xi\pi\rho\sigma\tau\varphi\chi\psi\omega$

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hufthelfjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k)$$

$$\pi = 3.1415926\ldots$$

Theorem (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k)$$

$$\pi = 3.1415926\ldots$$

calligraphic: $ABCD\text{EFGHIJKLMNOPQRSTUVWXYZ}\\\text{abcdefghijklmnopqrstuvwxyz}$

greek: $\Gamma\Delta\Theta\Xi\Pi\Upsilon\Phi\Omega$ $\alpha\beta\gamma, \delta\epsilon\zeta\theta\iota\kappa\lambda\mu\nu\pi\rho\sigma\tau\upsilon\phi\psi\omega$

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hühffelford, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k)$$

$$\pi = 3.1415926 \ldots$$ (3.1)

calligraphic: \text{ABCDEFGLHJKLMNPQRSTUVWXYZWXY}Z
greek: \Gamma\Delta\Theta\Xi\Pi\Psi\Omega \alpha\beta\gamma\delta\eta\theta\iota\kappa\lambda\mu\nu\xi\pi\rho\sigma\tau\upsilon\phi\chi\psi\omega

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981) and for subjectively distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.

acegmnopqrstuvwxyz
Theorem 1 (Residue Theorem) Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then
\[
\frac{1}{2\pi i} \int_\gamma f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \pi = 3.1415926... \tag{3.1}
\]

blackboard: \(ABCDEFGHIJKLMNOPQRSTUVWXYZ \)
calligraphic: \(\mathcal{ABCDEFHJKLMNOPQRSTUVWXYZ} \)
greek: \(ΓΔΘΙΛΞΠΣΥΦΨΩ \)
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots$$ (3.1)

calligraphic: $ABC\{DFGIJKLM\{NOPQRSTUVWXYZVWXYZ\{\}\}$
greek: $\Gamma\Delta\Theta\Lambda\Pi\Sigma\Upsilon\Phi\Omega\alpha\beta\gamma, \delta\varepsilon\zeta\theta\iota\kappa, \lambda\mu\nu\xi\pi\rho\sigma\tau\upsilon\phi\psi\omega$

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \oint_{\gamma} f(z) dz = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k)$$

$$\pi = 3.1415926 \ldots$$

(3.1)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hülffefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.

Theorem 1 (Residue Theorem)

Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \int_G f = \sum_{k=1}^m n(\gamma; a_k) \text{Res}(f; a_k)
\]

(3.1)

calligraphic: \(\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \)
greek: \(\Gamma\Delta\Theta\Lambda\Sigma\Upsilon\Phi\Xi\Omega \)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure \(p \) to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(y \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(y \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \int_y f = \sum_{k=1}^m a(y, a_k) \text{Res}(f, a_k)
\]

(3.1)
calligraphic: ABCDEFGHIJKLMNOPQRSTUVWXYZ

greek: \(\Gamma\Delta\Theta\Lambda\Sigma\Xi\Psi\Omega \)

Rank-dependent utility theories, introduced for objective probabilities by Quigg (1981; 1982) and for subjective distributions by Schmeidler (1980), reconfigure \(p \) to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hufflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k)
\]

\(\pi = 3.1415926 \ldots \) \hspace{1cm} (3.4)

calligraphic: \(\text{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \)
greek: \(\Gamma\Delta\Theta\Lambda\Pi\Sigma\Upsilon\Phi\Psi\Omega \)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1982; 1989) and for subjective distributions by Schneider (1983), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.

\footnotesize 0123456789

\texttt{anttor (10pt)}
Test page: \texttt{typeface=anttor:light} (10pt)

typeface package options:
\begin{verbatim}
typeface anttor:light

textfigures default

sanstypeface default

monotypeface default

mathtypeface anttor

symboltypeface default
\end{verbatim}

\begin{tabular}{|l|l|l|l|l|l|}
\hline
Family & Typeface & \TeX{} Name & \texttt{em} size & \texttt{ex} size & scale & scale time \\
\hline
Roman & Antykwa Toruńska Light & ec-anttl & 10.000pt & 4.7000pt & 1.0000 & not scaled \\

\hline

\texttt{Typeface} & \texttt{em} size & \texttt{ex} size & scale & scale time \\
\hline

\texttt{Roman} & 10.000pt & 4.7000pt & 1.0000 & not scaled \\
\texttt{Sans Serif} & 10.57755pt & 10.575pt & 4.7000pt & 1.0578 & load time \\
\texttt{Typewriter} & 11.461pt & 4.7000pt & 1.0919 & load time \\
\texttt{Math} & 10.000pt & 4.7000pt & 1.0000 & not scaled \\
\texttt{Symbols} & 10.000pt & 4.7000pt & 1.0000 & not scaled \\
\hline

\texttt{Antykwa Toruńska Light} \\

\texttt{Normal:} a b c d e f g h i j k l m n o p q r s t u v w x y z \\
\texttt{Bold:} a b c d e f g h i j k l m n o p q r s t u v w x y z \\
\texttt{Italic:} a b c d e f g h i j k l m n o p q r s t u v w x y z \\
\texttt{Smallcaps:} a b c d e f g h i j k l m n o p q r s t u v w x y z \\
\texttt{Variants:} Light Condensed Medium Semi-bold Bold Bold-extended Bold-Smallcaps Extra-bold

\begin{verbatim}
Plain numerals: 0123456789
{liningnums}: 0123456789
{textnums}: 0123456789
\textstylenums: 0123456789
\oldstylenums: 0123456789
\end{verbatim}

\begin{verbatim}
\texttt{Theorem 1 (Residue Theorem)}
\texttt{Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then}
\end{verbatim}

\begin{align}
\frac{1}{2\pi i} \int \gamma f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926\ldots
\end{align}

\begin{verbatim}
\texttt{calligraphic: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z}
\texttt{greek: \Gamma \Delta \Theta \Xi \Psi \Phi \Omega \alpha \beta \gamma \delta \epsilon \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \rho \sigma \tau \upsilon \phi \chi \psi\}
\end{verbatim}

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hübelfeld, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem)

Let \(M = \oint_C \frac{f(z)}{z-a} \, dz \) for \(f(z) \) analytic in the region \(C \), except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma = 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \int_C f \left(\frac{1}{z} \right) \sum_{k=1}^m \frac{n(\gamma; a_k) \text{Res}(f; a_k)}{z-a_k} \, dz = -1.3415926 \ldots
\]

(3.1)

The proof is given by integrating the functions \(f(z) \) and \(f(1/z) \) and using the Cauchy integral formula for \(f(z) \) and the change of variables for \(f(1/z) \).

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure the probability weights to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by classical expected utility theories and second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then
\[
\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots
\]
Theorem 1 (Residue Theorem) Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \int_G f(z) \, dz = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k)
\]

\[
\pi = 3.1415926 \ldots
\]
Test page: \textit{typeface=beraserif (10pt)}

typeface package options:

<table>
<thead>
<tr>
<th>Family</th>
<th>Typeface</th>
<th>\TeX Name</th>
<th>em size</th>
<th>ex size</th>
<th>scale</th>
<th>scale time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roman</td>
<td>Bera Serif</td>
<td>fver8t</td>
<td>10.000pt</td>
<td>5.1900pt</td>
<td>1.0000</td>
<td>not scaled</td>
</tr>
<tr>
<td>Sans Serif</td>
<td>Default</td>
<td>ecss1000</td>
<td>11.677pt</td>
<td>5.1900pt</td>
<td>1.1680</td>
<td>load time</td>
</tr>
<tr>
<td>Typewriter</td>
<td>Default</td>
<td>ectt1000</td>
<td>12.657pt</td>
<td>5.1900pt</td>
<td>1.2057</td>
<td>load time</td>
</tr>
<tr>
<td>Math</td>
<td>Default</td>
<td>cmr12a12.05429pt</td>
<td>11.803pt</td>
<td>5.1901pt</td>
<td>1.2054</td>
<td>load time</td>
</tr>
<tr>
<td>Symbols</td>
<td>Default</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>load time</td>
</tr>
</tbody>
</table>

'rm' family: Bera Serif

Normal: abcdeghijklmnopqrstuvwxyz ct st th ff fl ffi ffl ft ij æ œ ö ˜e wavaw

Bold: abcdeghijklmnopqrstuvwxyz ct st th ff fl ffi ffl ft ij æ œ ö ˜e wavaw

Italic: abcdeghijklmnopqrstuvwxyz ct st th ff fl ffi ffl ft ij æ œ ö ˜e wavaw

Slant: abcdeghijklmnopqrstuvwxyz ct st th ff fl ffi ffl ft ij æ œ ö ˜e wavaw

Smallcaps: abcdeghijklmnopqrstuvwxyz ct st th ff fl ffi ffl ft ij æ œ ö ˜e wavaw

Variants: Light Condensed Medium Semi-bold Bold Bold-extended Bold-Smallcaps Extra-bold

\begin{align}
\text{Plain numerals:} & \quad 0123456789 \\
\text{Italics:} & \quad 0123456789 \\
\text{Bold:} & \quad 0123456789 \\
\text{Bold Italics:} & \quad 0123456789 \\
\text{Punctuation:} & \quad \% \ldots \? \& ! \# = (_{-})
\end{align}

\begin{align}
\text{Math:} & \quad 0123456789 \\
\text{\{liningnums\}:} & \quad 0123456789 \\
\text{\{textnums\}:} & \quad 0123456789 \\
\text{\textstylenums:} & \quad 0123456789 \\
\text{\oldstylenums:} & \quad 0123456789 \\
\text{\oldstylenums (TS1):} & \quad 0123456789 \\
\end{align}

\begin{align}
\text{Theorem 1 (Residue Theorem)} & \quad \text{Let } f \text{ be analytic in the region } G \text{ except for the isolated singularities } a_1, a_2, \ldots, a_m. \text{ If } \gamma \text{ is a closed rectifiable curve in } G \text{ which does not pass through any of the points } a_k \text{ and if } \gamma \approx 0 \text{ in } G \text{ then}
\end{align}

\begin{align}
&\quad \frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots \quad (3.1)
\end{align}

greek: \Gamma \Delta \Theta \Lambda \Xi \Pi \Psi \Omega

\begin{align}
\text{Rank-dependent utility theories, introduced for objective probabilities by Quigg (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure } p \text{ to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein \& Slovic, 1971; Hüfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.}
\end{align}
Test page: typeface=bitstreamcharter (10pt)

typeface package options:

<table>
<thead>
<tr>
<th>Family</th>
<th>Typeface</th>
<th>(\mathcal{F}) Name</th>
<th>em size</th>
<th>ex size</th>
<th>scale</th>
<th>scale time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roman</td>
<td>Math Design Charter</td>
<td>mdbchr8t at 9.60007pt</td>
<td>9.6001pt</td>
<td>4.6176pt</td>
<td>1.0000</td>
<td>not scaled</td>
</tr>
<tr>
<td>Sans Serif</td>
<td>Default</td>
<td>ecss1000 at 10.39215pt</td>
<td>10.389pt</td>
<td>4.6176pt</td>
<td>1.0392</td>
<td>load time</td>
</tr>
<tr>
<td>Typewriter</td>
<td>Default</td>
<td>ectl1000 at 10.60007pt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

`'rm'` family:

- Bitstream Charter
- Math Design Charter
- Math

Symbols

De f a ul t

- MathDesign md bchr
- Math
- Typewriter Default ectt1000 at 10.72739pt 11.261pt 4.6176pt 1.0727 load time
- Sans Serif Default ecss1000 at 10.39215pt 10.389pt 4.6176pt 1.0392 load time
- Roman Math Design Charter mdbchr8t at 9.60007pt 9.6001pt 4.6176pt 1.0000 not scaled

Family
typeface fontencoding default (T1)
textfigures inputencoding default (utf8)
sanstypeface textcomp default (full)
monotypeface fontloaderorder default
mathytypeface mathdesign printinfo true
symbolytypeface debug false

Theorem 1 (Residue Theorem) Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \int_G f = \sum_{k=1}^m n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots
\]

blackboard: \(ABCDEFGHIJKLMNOPQRSTUVWXYZ \)
calligraphic: \(a \ b \ c \ d \ e \ f \ g \ h \ i \ j \ k \ l \ m \ n \ o \ p \ q \ r \ s \ t \ u \ v \ w \ x \ y \ z \)
fraktur: \(\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \mathbb{N}\mathbb{O} \mathbb{P}\mathbb{Q}\mathbb{R}\mathbb{S}\mathbb{T}\mathbb{U}\mathbb{V}\mathbb{W}\mathbb{X}\mathbb{Y}\mathbb{Z} \)
greek: \(\Gamma \Delta \Theta \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega \)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure \(p \) to accommodate findings that actual choice behaviours often differ systematically from those predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hülfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Schmeidler (1989), reconfigure

\(p \)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure \(p \) to accommodate findings that actual choice behaviours often differ systematically from those predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hülfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Schmeidler (1989), reconfigure

\(p \)
Theorem 1 (Residue Theorem) Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \int_{\gamma} f(z) \, dz = \sum_{k=1}^{m} n(\gamma, a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots
\]

(3.1)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure \(p \) to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Húfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$
\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k)
$$

$\pi = 3.1415926 \ldots$

(3.1)

calligraphic: $\mathcal{A \mathcal{B} \mathcal{C} \mathcal{D} \mathcal{E} \mathcal{F} \mathcal{G} \mathcal{H} \mathcal{I} \mathcal{J} \mathcal{K} \mathcal{L} \mathcal{M} \mathcal{N} \mathcal{O} \mathcal{P} \mathcal{Q} \mathcal{R} \mathcal{S} \mathcal{T} \mathcal{U} \mathcal{V} \mathcal{W} \mathcal{X} \mathcal{Y} \mathcal{Z}$
greek: $\Gamma \Delta \Theta \Xi \Pi \Psi \Omega \alpha \beta \gamma \delta \varepsilon \zeta \theta \iota \kappa \lambda \mu \nu \xi \pi \rho \sigma \tau \upsilon \phi \chi \psi \omega$

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Test page: typeface=cmfibonacci (10pt)

typeface package options:

<table>
<thead>
<tr>
<th>Family</th>
<th>Typeface</th>
<th>TeX Name</th>
<th>em size</th>
<th>ex size</th>
<th>scale</th>
<th>scale time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roman</td>
<td>CM Fibonacci</td>
<td>ecfb1000</td>
<td>13.164pt</td>
<td>4.9773pt</td>
<td>1.0000</td>
<td>not scaled</td>
</tr>
<tr>
<td>Sans Serif</td>
<td>Default</td>
<td>ecss1000</td>
<td>11.198pt</td>
<td>4.9773pt</td>
<td>1.1202</td>
<td>load time</td>
</tr>
<tr>
<td>Typewriter</td>
<td>Default</td>
<td>ectl1000</td>
<td>12.138pt</td>
<td>4.9773pt</td>
<td>1.1563</td>
<td>load time</td>
</tr>
<tr>
<td>Math</td>
<td>Default</td>
<td>cmr12at11.56021pt</td>
<td>11.319pt</td>
<td>4.9773pt</td>
<td>1.1560</td>
<td>load time</td>
</tr>
</tbody>
</table>

'rm' family: CM Fibonacci

Normal: abcd efghijklmnopqrstuvwxyz ct st th ff fi fl fll fi ft ij æ œ ö ˜ e wavaw

Bold: abcd efghijklmnopqrstuvwxyz ct st th ff fi fl fll fi ft ij æ œ ö ˜ e wavaw

Italic: abcd efghijklmnopqrstuvwxyz ct st th ff fi fl fll fi ft ij æ œ ö ˜ e wavaw

Slant: abcd efghijklmnopqrstuvwxyz ct st th ff fi fl fll fi ft ij æ œ ö ˜ e wavaw

Smallcaps: abcd efghijklmnopqrstuvwxyz ct st th ff fi fl fll fi ft ij æ œ ö ˜ e wavaw

Variants: Light Condensed Medium Semi-bold Bold Bold-extended Bold-Smallcaps Extra-bold

Plain numerals: 0123456789

Math:

<table>
<thead>
<tr>
<th>Normal</th>
<th>Italic</th>
<th>Bold</th>
<th>Bold Italic</th>
<th>Punctuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0123456789</td>
<td>0123456789</td>
<td>0123456789</td>
<td>0123456789</td>
<td>$ % . , ; ? & ! # = (_) + - – —</td>
</tr>
</tbody>
</table>

Footnotes

Theorem 1 (Residue Theorem) Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926\ldots (3.1)
\]

calligraphic: \(ABCDEFGHIJKLMNOPQRSTUVWXYZ \)
greek: \(\Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\omega \)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure \(p \) to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hülfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem)

Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$
\frac{1}{2\pi i} \int_{\gamma} f(z) \, dz = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k)
$$

(3.1)

calligraphic: $\text{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$
greek: $\Gamma\Delta\Theta\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega$

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Let
\[f(z) \] be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then
\[\frac{1}{2\pi i} \int_{\gamma} f(z) = \sum_{k=1}^{m} n(\gamma; a_k) \ \text{Res}(f; a_k) \]
\[\pi = 3.1415926 \ldots \] (3.1)
calligraphic: \(ABCDEFGHIJKLMNOPQRSTUVWXYZ \) greek: \(\Gamma \Delta \Theta \Xi \Sigma \Upsilon \Phi \Psi \Omega \)
Theorem 1 (Residue Theorem) Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) = \pi \cdot 3.1415926 \ldots
\]

(3.1)

calligraphic: \(\text{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \)
greek: \(\Gamma\Delta\Theta\Xi\Psi\Omega\alpha\beta\gamma\delta\epsilon\\theta\iota\kappa\lambda\mu\nu\pi\rho\sigma\tau\upsilon\phi\chi\psi \)

Rank-dependent utility theories, introduced for objective probabilities by Quigg (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure \(p \) to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Test page: typeface=dayrom (i0pt)

Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$
\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.141592 \ldots
$$

calligraphic: $\Delta\Theta\Xi\Pi\Upsilon\Phi\Theta$ Greek: $\Gamma\Delta\Theta\Xi\Pi\Upsilon\Phi\Theta$

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmidtler (1989), reconfigure p to accommodate findings that actual choice behaviour often differs systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; H"uflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.

$$
acegmnpqrsuuvwxyzacegmnpqrsuuvwxyzacegmnpqrsuuvwxyzbdhfjikltbdhfjikltbdhfjikltbdhfjikltbdhfjikltbdhfjiklt
ABCDEFHGIJKLMNOPQRSTUVWXYZ
012345678901234567890123456789
$$
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.141592 \ldots$$

(3.1)

calligraphic: $\text{ABCDEFGHJKLMNOPQRSTUVWXYZ}$
greek: $\Gamma\Delta\Theta\Xi\Pi\Sigma\Upsilon\Phi\Omega$ $\alpha\beta\gamma\delta\epsilon\zeta\theta\iota\kappa\lambda\mu\nu\pi\rho\sigma\tau\varphi\psi\chi$.

Rank-dependent utility theory, introduced for objective probabilistic by Quiggin (1981; 1982) and for subjective distribution by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviour often differ systematically from that predicted by classical expected utility theory (for example, see Allais, 1953; Ellberg, 1961; Lichtenstein & Slovic, 1971; Hübner, 2004). The theory affirm three in two interrelated ways first by discarding "the linearity of the probabilistic" interpretation imposed by the standard rationality assumption, second by employing more of the information available to individual at decision-making time.
Test page: typeface=dejavu (10pt)

typeface package options:

typeface dejavu fontencoding default (T1)
textfigures default inputencoding default (utf8)
sanstypeface default textcomp default (full)
monotypeface default fontloadorder default
mathtypeface default printinfo true
symbolstypeface default debug false

Family	Typeface	\TeX Name	em size	ex size	scale	scale time
Roman | DejaVu | DejaVuSerif-tlf-t1 | 10.000pt | 5.1900pt | 1.0000 | not scaled
Sans Serif | Default | ecss1000 at 11.6803pt | 11.677pt | 5.1900pt | 1.1680 | load time
Typewriter | Default | ectt1000 at 12.05719pt | 12.657pt | 5.1900pt | 1.2057 | load time
Math | Default | cmr12at12.05429pt | 11.803pt | 5.1901pt | 1.2054 | load time
Symbols | Default |

Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots \quad (3.1)$$

calligraphic: \(ABCDEFHJKL\MNOPQRSTUVWXYZ\)
greek: \(\Gamma\Delta\Theta\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega\)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; H"ufelfeld, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Test page: typeface=dejavu:condensed (10pt)

typeface package options:

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>typeface</td>
<td>dejavu:condensed</td>
</tr>
<tr>
<td>fontencoding</td>
<td>default (T1)</td>
</tr>
<tr>
<td>textfigures</td>
<td>default</td>
</tr>
<tr>
<td>inputencoding</td>
<td>default (utf8)</td>
</tr>
<tr>
<td>sanstypeface</td>
<td>default</td>
</tr>
<tr>
<td>textcomp</td>
<td>default (full)</td>
</tr>
<tr>
<td>monotypeface</td>
<td>default</td>
</tr>
<tr>
<td>fontloadorder</td>
<td>default</td>
</tr>
<tr>
<td>mathtypeface</td>
<td>default</td>
</tr>
<tr>
<td>printinfo</td>
<td>true</td>
</tr>
<tr>
<td>symbolstypeface</td>
<td>default</td>
</tr>
</tbody>
</table>

- **Family** | **Typeface** | **TeX Name** | **em size** | **ex size** | **scale** | **scale time** |
- **Roman** | DejaVu Condensed | DejaVuSerifCondensed-tlf-t1 | 10.000pt | 5.1900pt | 1.0000 | not scaled |
- **Sans Serif** | Default | ecss1000 at 11.6803pt | 11.677pt | 5.1900pt | 1.1680 | load time |
- **Typewriter** | Default | ectt1000 at 12.05719pt | 12.657pt | 5.1900pt | 1.2057 | load time |
- **Math** | Default | cmr12 at 12.05429pt | 11.803pt | 5.1901pt | 1.2054 | load time |
- **Symbols** | Default | | | | | load time |

- **'rm' family**: DejaVu Condensed
- **Normal**: abcdefghijklmnopqrstuvwxyzctstth/uniFB00fifjfl/uniFB03/uniFB04ftijæœö˜ewaw
- **Bold**: abcdefghijklmnopqrstuvwxyzctstth/uniFB00fifjfl/uniFB03/uniFB04ftijæœö˜ewaw

Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots$$

(3.1)

Calligraphic: $ABCDEFGIJKLMNOPQRSTUVWXYZ$

Greek: $\Gamma\Delta\Theta\Xi\Sigma\Upsilon\Phi\Psi\Omega\alpha\beta\gamma\delta\varepsilon\zeta\eta\theta\iota\kappa\lambda\mu\nu\xi\pi\rho\sigma\tau\varphi\psi\chi\omega$

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hühlefeldt, 2004). These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$
\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots
$$

(3.1)

calligraphic: ABCDEFGHIJKLMNOPQRSTUVWXYZ

greek: ΓΔΘΛΞΠΣΤΦΨΩ αβγδεζηθικλμνξπρστυφχψω

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schneider (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Huflefford, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \operatorname{Res}(f; a_k)
\]

(3.1)

calligraphic: \(ABCDEFGHIJKLMNOPQRSTUVWXYZ \)
greek: \(\Gamma\Delta\Theta\Lambda\Xi\Sigma\Upsilon\Phi\Omega \)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure \(p \) to accommodate findings that actual choice behaviours often differ systematically from those predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$
\frac{1}{2\pi i} \int_{\gamma} f(z) \, dz = \sum_{k=1}^{m} \left(\frac{n(\gamma; a_k)}{a_k} \right) \operatorname{Res}(f; a_k) = \pi \cdot 3.1415926 \ldots
$$

(3.1)

Calligraphic: $\mathcal{ABCDFGHJKLMNPQRSTUVWXYZ}$

Greek: $\Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega$

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Höffeleffod, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem)

Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \not\equiv 0$ in G, then

$$\frac{1}{2\pi i} \oint_G f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k)$$

(3.1)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from those predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.

$$\text{Theorem 1 (Residue Theorem)} \quad \text{Let } f \text{ be analytic in the region } G \text{ except for the isolated singularities } a_1, a_2, \ldots, a_m. \text{ If } \gamma \text{ is a closed rectifiable curve in } G \text{ which does not pass through any of the points } a_k \text{ and if } \gamma \not\equiv 0 \text{ in } G \text{ then}$$

$$\frac{1}{2\pi i} \oint_G f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k)$$

(3.1)
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$
\frac{1}{2\pi i} \int_\gamma f(z) \sum_{k=1}^m n(\gamma; a_k) \text{Res}(f; a_k) = 3.1415926 \ldots
$$

Footnotes (smallcaps):

Greek: Γάλακτος Ελείου Φωτός

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1981), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüffelfjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots
\]

(3.1)

calligraphic: \(\Gamma\Delta\Theta\Xi\Sigma\Upsilon\Phi\Psi \)
greek: \(\alpha\beta\gamma,\delta\varepsilon\zeta\eta\theta\iota\kappa\lambda\mu\nu\pi\rho\sigma\tau\upsilon\phi\chi\psi \)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hübtlefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.

acegmnopqrstuvwxyzacegnpj

Footnotesize = fontsize
Theorem 1 (Residue Theorem) Let \(G \) be a closed rectifiable curve in \(\mathbb{C} \) which does not pass through any of the points \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \int_\gamma f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots \tag{3.1}
\]

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure \(p \) to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Test page: \textit{typeface=gfsneohellenic (10pt)}

typeface package options:

\begin{itemize}
 \item typeface gfsneohellenic
 \item fontencoding default (T1)
 \item textfigures default
 \item inputencodings default (utf8)
 \item sanstypeface default
 \item textcomp default (full)
 \item monotypeface default
 \item fontloader default
 \item mathypetypeface cmbright
 \item printinfo true
 \item symbolstypface default
 \item debug false
\end{itemize}

\begin{verbatim}
Family | Typeface | \TeX Name | em size | ex size | scale | scale time
Roman | GFS Neohellenic | neohellenicrg9a at 12.25006pt 12.250pt 4.7408pt 1.0000 not scaled
Sans Serif | GFS Neohellenic | neohellenicrg9a at 12.25006pt 12.250pt 4.7408pt 1.0000 not scaled
Math | CMBrigh | cmbr10ar10.03922pt 10.541pt 4.7407pt 1.0039 load time
Symbols | 'rm' family: GFS Neohellenic

Normal: abcdefghijklmnopqrstuvwxyz ct st th ff fi fj fl ffi ffl ft ij æ œ ö ˜e wavaw
large footnotesize 0123456789

Bold: abcdefghijklmnopqrstuvwxyz ct st th ff fi fj fl ffi ffl ft ij æ œ ö ˜e wavaw
large footnotesize 0123456789

Italic: abcdefghijklmnopqrstuvwxyz ct st th ff fi fj fl ffi ffl ft ij æ œ ö ˜e wavaw
large footnotesize 0123456789

Slant: abcdefghijklmnopqrstuvwxyz ct st th ff fi fj fl ffi ffl ft ij æ ñ œ ö ˜e wavaw
large footnotesize 0123456789

Smallcaps: abcdefghijklmnopqrstuvwxyz ct st th ff fi fj fl ffi ffl ft ij æ ñ œ ö ˜e wavaw
large footnotesize 0123456789

Variants: Light Condensed Medium Semi-bold Bold Bold-extended Bold-Smallcaps

Plain numerals: 0123456789

\{liningnums\}: 0123456789

\{textnums\}: 0123456789

\textstylenums: 0123456789

\oldstylenums: \{TS1\}:
\begin{itemize}
 \item 0123456789
 \item 0123456789
 \item 0123456789
 \item 0123456789
\end{itemize}

Math:
\begin{itemize}
 \item 0123456789
 \item 0123456789
 \item 0123456789
 \item 0123456789
\end{itemize}

Footnotesize
\begin{itemize}
 \item 0123456789
 \item 0123456789
 \item 0123456789
 \item 0123456789
\end{itemize}

\end{verbatim}

\section*{Theorem 1 (Residue Theorem)}

Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots \tag{3.1}$$

\begin{itemize}
 \item calligraphic: ABCDEFGHIJKLMNOPQRSTUVWXYZ
 \item greek: ΓΔΘΞΠΣΤΦΨΩ αβγδεζηθικλμνξπρστυφχψ
\end{itemize}

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hufleiford, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots (3.1)
\]

where \(n(\gamma; a_k) \) is the number of times \(\gamma \) winds around \(a_k \) counterclockwise. This theorem is a fundamental result in complex analysis and is used in the evaluation of certain integrals.
Test page: typeface=gyrepagella (10pt)

typeface package options:

typeface | gyrepagella | fontencoding | default | (T1)
textfigures | palatino | inputencoding | default | (utf8)
sans Typewriter | default | textcomp | default | (full)

monotypeface | default | fontloader | default
math Typeset | pazo | printorder | true

symbol typeset | default | debug | false

Family | Typeface | TeX Name | em size | ex size | scale | scale time
Roman | Gyre Pagella | ec-qplr | 10.000pt | 4.4900pt | 1.0000 | not scaled

Text figures | Palatino | pprlud at 9.57352pt | 9.5735pt | 4.4900pt | 0.9574 | load time

Sans Serif | Default | ecs1000 at 10.10498pt | 10.102pt | 4.4900pt | 1.0105 | load time

Typewriter | Default | ectx1000 at 10.43091pt | 10.949pt | 4.4900pt | 0.9574 | load time

Math | Pazo | pprl9at9.57352pt | 9.5735pt | 4.4900pt | 0.9574 | load time

Symbols | Default | scale time

'rm' family: Gyre Pagella

Normal:

abcdefgijklmnopqrstuvwxyz ct st ff fi fl ffi ft ij ae oe oe wawav large

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Bold:

abcdefgijklmnopqrstuvwxyz ct st ff fi fl ffi ft ij ae oe oe wawav large

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Italic:

abcdefgijklmnopqrstuvwxyz ct st ff fi fl ffi ft ij ae oe oe wawav large

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Slant:

abcdefgijklmnopqrstuvwxyz ct st ff fi fl ffi ft ij ae oe oe wawav large

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Smallcaps:

abcdefgijklmnopqrstuvwxyz ct st ff fi fl ffi ft ij ae oe oe wawav LARGE

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Variants:

Light Condensed Medium Semi-bold Bold Bold-extended Bold-Smallcaps Extra-bold

Plain numerals:

Normal | 0123456789 | 0123456789 | 0123456789 | 0123456789 | $ % ; ; ? & ! # = (_) + - – —

Math:

0123456789

{liningnums}:

0123456789

{textnums}:

0123456789

\textstylenums:

0123456789

\oldtextstylenums:

0123456789

Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma, a_k) \text{Res}(f; a_k)$$

$$\gamma \approx 0$$

blackboard: ABCDEFGHIJKLMNOPQRSTUVWXYZ

calligraphic: ABCDEFGHIJKLMNOPQRSTUVWXYZ

greek: ГΔΘΞΠΨΩ αβγδεζηθικ.λμνξπρστυφχψω

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from those predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hübaffles, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f(z) \, dz = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k),$$

where $n(\gamma; a_k)$ is the number of times γ winds around a_k in the positive direction.

(3.1)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schneider (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hülfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem)

Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$
\frac{1}{2\pi i} \oint_G f = \sum_{k=1}^m n(\gamma; a_k) \text{Res}(f; a_k) = \pi \approx 3.1415926 \ldots
$$

(3.1)

calligraphic: \(\text{ABCDEFGHIJKLMNOPQRSTUVWXYZ\ \%\ .\ ,\ =\ (\ _\)\ +\ -\ –\ —\)\)

greek: \(\Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega\ \alpha\beta\gamma\delta\epsilon\zeta\eta\theta\iota\kappa\lambda\mu\nu\xi\pi\rho\sigma\tau\upsilon\phi\chi\psi\omega\)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a₁, a₂, ..., aₘ. If y is a closed rectifiable curve in G which does not pass through any of the points aₖ and if y ≈ 0 in G then

$$\frac{1}{2\pi i} \int_c f = \sum_{k=1}^{m} n(y; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926...$$

(3.1)

calligraphic: \text{ABCDEFGHIJKLMNOPQRSTUVWXYZ}
greek: \Gamma\Delta\Theta\Xi\Psi\Omega \quad \alpha\beta\gamma\delta\epsilon\zeta\theta\iota\kappa\lambda\mu\nu\xi\pi\rho\sigma\tau\upsilon\phi\chi\psi

Rank-dependent utility theories, introduced for objective probabilities by Quigg (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; H kullanım, 2004). These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Let 𝑀𝑎𝑡ℎ Condensed calligraphic: 𝒜ℬ𝒞𝒟ℰℱ𝒢ℋℑ𝒥𝒦ℒℳ𝒩𝒪𝒫𝒬ℛ𝒮𝒯𝒰𝒱𝒲𝒳𝒴𝒵 greek: abcdefghijklmnopqrstuvwxyz ct st th ff fi fj fl ffi ffl ft ij æ œ ö ˜ e wavaw

large Italic: abcdefghijklmnopqrstuvwxyz ct st th ff fi fj fl ffi ffl ft ij æ œ ö ˜ e wavaw

large Normal: abcdefghijklmnopqrstuvwxyz ct st th ff fi fj fl ffi ffl ft ij æ œ ö ˜ e wavaw

Default 𝑎𝑐𝑒𝑔𝑚𝑛𝑜𝑝𝑞𝑟𝑠𝑢𝑣𝑤𝑥𝑦𝑧

by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.

These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by Schmeidler (𝐺).

Schmeidler (2013) and if (TS1) and for subjective distributions by 𝑅𝑒𝑠(𝐺).

Hüfflefjord, (2013).

Theorem 1 (Residue Theorem) Let 𝑓 be analytic in the region 𝐺 except for the isolated singularities 𝑎₁, 𝑎₂, ..., 𝑎ₘ. If 𝑦 is a closed rectifiable curve in 𝐺 which does not pass through any of the points 𝑎ₖ and if 𝑦 ≈ 0 in 𝐺 then

\[\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(y, a_k) \text{Res}(f, a_k) \]

\(\pi = 3.1415926... \)

calligraphic: 𝐴𝐁𝐂𝐃𝐄𝐅𝐇𝐈JKLMNOPQRSTUVWXYZ
greek: ΓΔΘΞΠΨΩ αβγδεζηθικλμνξπρστυϕχψω

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981, 1982) and for subjective distributions by Schneider (1989), reconfigure 𝑝 to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hufieljord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_G f = \sum_{k=1}^m n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots$$

(3.1)

blackboard: $ABCDEFGHIJKLMNOPQRSTUVWXYZ$

calligraphic: $ABCDEFGHIJKLMNOPQRSTUVWXYZ$

fraktur: $ABCDEFGHIJKLMNOPQRSTUVWXYZ$

greek: $ABCDEFGHIJKLMNOPQRSTUVWXYZ$
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If y is a closed rectifiable curve in G which does not pass through any of the points a_k and if $y \approx 0$ in G then

$$\frac{1}{2\pi i} \int_G f = \sum_{k=1}^m n(y; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots$$

(3.1)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981: 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from those predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \to 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f(z)dz = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926\ldots$$

(3.1)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Alais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Huflejtford, 2004). These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \not\equiv 0$ in G then

$$
\frac{1}{2\pi i} \oint_G f(z) \, dz = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k)
$$

(3.1)

blackboard: $\mathbb{A}\mathbb{B}\mathbb{C}\mathbb{D}\mathbb{E}\mathbb{F}\mathbb{G}\mathbb{H}\mathbb{I}\mathbb{J}\mathbb{K}\mathbb{L}\mathbb{M}\mathbb{N}\mathbb{O}\mathbb{P}\mathbb{Q}\mathbb{R}\mathbb{S}\mathbb{T}\mathbb{U}\mathbb{V}\mathbb{W}\mathbb{X}\mathbb{Y}\mathbb{Z}$
caligraphic: $\mathcal{A}\mathcal{B}\mathcal{C}\mathcal{D}\mathcal{E}\mathcal{F}\mathcal{G}\mathcal{H}\mathcal{I}\mathcal{J}\mathcal{K}\mathcal{L}\mathcal{M}\mathcal{N}\mathcal{O}\mathcal{P}\mathcal{Q}\mathcal{R}\mathcal{S}\mathcal{T}\mathcal{U}\mathcal{V}\mathcal{W}\mathcal{X}\mathcal{Y}\mathcal{Z}$
fraktur: $\mathfrak{a}\mathfrak{b}\mathfrak{c}\mathfrak{d}\mathfrak{e}\mathfrak{f}\mathfrak{g}\mathfrak{h}\mathfrak{i}\mathfrak{j}\mathfrak{k}\mathfrak{l}\mathfrak{m}\mathfrak{n}\mathfrak{o}\mathfrak{p}\mathfrak{q}\mathfrak{r}\mathfrak{s}\mathfrak{t}\mathfrak{u}\mathfrak{v}\mathfrak{w}\mathfrak{x}\mathfrak{y}\mathfrak{z}$
greek: $\Gamma\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega$

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Höffliford, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f(z) \, dz = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k)$$

$$\pi = 3.1415926 \ldots$$

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hülffeljorde, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Test page: typeface=kpfons:light:nomligatures (10pt)

Theorem 1 (Residue Theorem) Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \int_{\gamma} f(z) dz = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots (3.1)
\]

blackboard: \(A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \)
calligraphic: \(A B C D E F G H I J K L M N O P Q R S T U V W X Y Z \)
fraction: \(\frac{\pi}{2} \)
greek: \(\Gamma \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega \alpha \beta \gamma \delta \varepsilon \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \omicron \pi \rho \sigma \tau \upsilon \phi \chi \psi \omega \)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; H"{u}ffelford, 2004). These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$
\frac{1}{2\pi i} \int_{\gamma} f(z) dz = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k)
$$

(3.1)

Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$
\frac{1}{2\pi i} \int_{\gamma} f(z) dz = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k)
$$

(3.1)

blackboard: $ABCDEFGHIJKLMNOPQRSTUVWXYZ$ abcdefghijklmnopqrstuvwxyz

calligraphic: $ABCDEFGHIJKLMNOPQRSTUVWXYZ$ abcdefghijklmnopqrstuvwxyz

Rank-dependent utility theories, introduced for objective probabilities by Quigg (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Huflelfjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Reduction Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \operatorname{Res}(f; a_k)$$

(3.1)

blackboard: $\mathbb{A}\mathbb{B}\mathbb{C}\mathbb{D}\mathbb{E}\mathbb{F}\mathbb{G}\mathbb{H}\mathbb{I}\mathbb{J}\mathbb{K}\mathbb{L}\mathbb{M}\mathbb{N}\mathbb{O}\mathbb{P}\mathbb{Q}\mathbb{R}\mathbb{S}\mathbb{T}\mathbb{U}\mathbb{V}\mathbb{W}\mathbb{X}\mathbb{Y}\mathbb{Z}$

calligraphic: $\mathcal{A}\mathcal{B}\mathcal{C}\mathcal{D}\mathcal{E}\mathcal{F}\mathcal{G}\mathcal{H}\mathcal{I}\mathcal{J}\mathcal{K}\mathcal{L}\mathcal{M}\mathcal{N}\mathcal{O}\mathcal{P}\mathcal{Q}\mathcal{R}\mathcal{S}\mathcal{T}\mathcal{U}\mathcal{V}\mathcal{W}\mathcal{X}\mathcal{Y}\mathcal{Z}$

fraktur: $\mathfrak{A}\mathfrak{B}\mathfrak{C}\mathfrak{D}\mathfrak{E}\mathfrak{F}\mathfrak{G}\mathfrak{H}\mathfrak{I}\mathfrak{J}\mathfrak{K}\mathfrak{L}\mathfrak{M}\mathfrak{N}\mathfrak{O}\mathfrak{P}\mathfrak{Q}\mathfrak{R}\mathfrak{S}\mathfrak{T}\mathfrak{U}\mathfrak{V}\mathfrak{W}\mathfrak{X}\mathfrak{Y}\mathfrak{Z}$

greek: ΓΔΘΞΠognito\(\alpha\beta\gamma\delta\epsilon\zeta\eta\theta\iota\kappa\lambda\mu\nu\omega\\rho\sigma\tau\upsilon\xi\\phi\chi\psi\$
Let

Theorem 1 (Residue Theorem)

1971; Hüfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.

Formally, if \(f \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(y \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \int_C f = \sum_{k=1}^m n(y; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots
\]

Theorem 1 (TS1): Residue Theorem

\[
\frac{1}{2\pi i} \int_C f = \sum_{k=1}^m n(y; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots
\]

These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.

\[
\text{acemnpsruwxyzacemnpsruwxyzacemnpsruwxyzacemnpsruwxyzbdhijklbdhijkstra
Theorem 1 (Residue Theorem)

Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \oint \gamma f(z) \, dz = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) = \pi.31415926 \ldots \tag{3.1}
\]

Calligraphic: \(ABCDEFGHIJKLMNOPQRSTUVWXYZ \)

Greek: \(\Gamma\Delta\Theta\Xi\Psi\Omega \)

Rank-dependent utility theories, introduced for objective probabilities by Quiggan (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure the restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots
\]

(3.1)

calligraphic: \(\Delta \Theta \Xi \iota \Sigma \Upsilon \Psi \Omega \) \(\alpha, \beta, \gamma, \delta, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, \nu, \pi, \rho, \sigma, \tau, \varphi, \chi, \psi \)

Greek: \(\Gamma \Delta \Theta \Xi \iota \Sigma \Upsilon \Psi \Omega \) \(\alpha, \beta, \gamma, \delta, \zeta, \eta, \theta, \iota, \kappa, \lambda, \mu, \nu, \pi, \rho, \sigma, \tau, \varphi, \chi, \psi \)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure \(p \) to accommodate findings that actual choice behaviours often differ systematically from those predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Huijffeld, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_G f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k)$$

$$\pi = 3.1415926\ldots$$

(3.1)

blackboard: $\text{ABCDEFHJKLMNPQRSTUVWXYZ}$

calligraphic: $\text{ABCDEFGHJKLMNPQRSTUVWXYZ}$

greek: $\Gamma\Delta\Theta\Lambda\Sigma\Upsilon\Phi\Psi\Omega$

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Höfflerfjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If y is a closed rectifiable curve in G which does not pass through any of the points a_k and if y is in G then

$$\frac{1}{2\pi i} \int_y f(z) \, dz = \sum_{k=1}^m n(y; a_k) \text{Res}(f; a_k)$$

(3.1)

blackboard: $\frac{1}{2\pi i} \int_y f(z) \, dz = \sum_{k=1}^m n(y; a_k) \text{Res}(f; a_k)$

calligraphic: $\frac{1}{2\pi i} \int_y f(z) \, dz = \sum_{k=1}^m n(y; a_k) \text{Res}(f; a_k)$

fraktur: $\alpha\beta\gamma\delta\epsilon\zeta\theta\iota\kappa\lambda\mu\nu\xi\pi\rho\sigma\tau\phi\chi\psi$

greek: $\Gamma\Delta\Theta\Pi\Sigma\Phi\Psi\Omega$

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ significantly from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hürffeldt, 2004). These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let G be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_n. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{n} n(\gamma; a_k) \text{Res}(f; a_k) = \pi = 3.1415926\ldots$$

(3.1)

blackboard: $\text{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \times \text{abcdefghijklmnopqrstuvwxyz}$
calligraphic: $\text{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \times \text{abcdefghijklmnopqrstuvwxyz}$
greek: $\Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega$
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If y is a closed rectifiable curve in G which does not pass through any of the points a_k and if $y = 0$ in G then

$$\frac{1}{2\pi i} \int_y f = \sum_{k=1}^{m} n(y; a_k) \text{Res}(f; a_k)$$

(3.1)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure probability statements in a way that is more accessible to individuals at decision-making time. These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \neq 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots$$ (3.1)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
The linearity of the probabilities restriction imposed by the standard rationality assumptions, second by employing more of

\textbf{Theorem 1 (Residue Theorem)} Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926\ldots
\]

(3.1)
Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\int_{\gamma} f = \frac{1}{2\pi i} \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) = \pi = 3.1415926 \ldots$$

(Remote Theorem)}
Test page: typeface=ptserif (10pt)

typeface package options:

typeface
 ptserif
 fontencoding default (T1)

textfigures
 default
 inputencoding default (utf8)

sanstypeface
 default
 textcomp default (full)

monotypeface
 default
 fontloadorder default

mathotypeface
 default
 printinfo true

symbolstypeface
 default
 debug false

<table>
<thead>
<tr>
<th>Family</th>
<th>Typeface</th>
<th>\TeX Name</th>
<th>em size</th>
<th>ex size</th>
<th>scale</th>
<th>scale time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roman</td>
<td>PT Serif</td>
<td>PTSerif-Regular-tlf-t1</td>
<td>10.000pt</td>
<td>5.0000pt</td>
<td>1.0000</td>
<td>not scaled</td>
</tr>
<tr>
<td>Sans</td>
<td>PT Sans</td>
<td>PTSans-Regular-tlf-t1</td>
<td>10.000pt</td>
<td>5.0000pt</td>
<td>1.0000</td>
<td>not scaled</td>
</tr>
<tr>
<td>Typewriter</td>
<td>Default</td>
<td>ectl1000 at 11.61575pt</td>
<td>12.193pt</td>
<td>5.0000pt</td>
<td>1.1616</td>
<td>load time</td>
</tr>
<tr>
<td>Math</td>
<td>Default</td>
<td>cmr12 at 11.61285pt</td>
<td>11.370pt</td>
<td>5.0000pt</td>
<td>1.1613</td>
<td>load time</td>
</tr>
</tbody>
</table>

'rm' family: PT Serif

Normal: abcd efghijklmnopqrstuvwxyz ct st th ff fi fl ffl ft ij æ œ ö ˜e wavaw large footnotesize 0123456789

Bold: abcd efghijklmnopqrstuvwxyz ct st th ff fi fl ffl ft ij æ œ ö ˜e wavaw large footnotesize 0123456789

Italic: abcd efghijklmnopqrstuvwxyz ct st th ff fi fl ffl ft ij æ œ ö ˜e wavaw large footnotesize 0123456789

Slant: abcd efghijklmnopqrstuvwxyz ct st th ff fi fl ffl ft ij æ œ ö ˜e wavaw large footnotesize 0123456789

Smallcaps: abcd efghijklmnopqrstuvwxyz ct st th ff fi fl ffl ft ij æ œ ö ˜e wavaw large footnotesize 0123456789

Variants:

Plain numerals:

Normal:

0123456789

 Italics:

0123456789

Bold:

0123456789

Bold Italics:

0123456789

Punctuation:

$. , =

\textstyle:

$. , =

\oldstyle:

$. , =

\oldstyle (TS1):

$. , =

\scriptstyle:

$. , =

\scriptscriptstyle:

$. , =

\footnotesize:

$. , =

Normal:

0123456789

0123456789

0123456789

0123456789

0123456789

0123456789

0123456789

0123456789

0123456789

0123456789

0123456789

0123456789

Theorem 1 (Residue Theorem) Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \int_\gamma f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \pi = 3.1415926 \ldots
\]

(3.1)

calligraphic: ABCDEFGHIJKLMNOPQRSTUVWXYZ

greek: ΓΔΘΞΠΣΤΦΨΩ αβγδεζηθϑϕχψω

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure \(p \) to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; H"ufflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f(z) \, dz = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k)$$

(3.1)

Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f(z) \, dz = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k)$$

(3.1)

blackboard: $ABCD\!\!EF\!\!GH\!\!IJ\!\!KL\!\!M\!\!N\!\!OP\!\!R\!\!S\!\!TU\!\!V\!\!WX\!\!YZ$

calligraphic: $ABCDEFGHIJKLMNOPQRSTUVWXYZ$

calligraphic: $abcdefghijklmnopqrstuvwxyz$

calligraphic: $ABCDEFGHIJKLMNOPQRSTUVWXYZ$

calligraphic: $abcdefghijklmnopqrstuvwxyz$

calligraphic: $ABCDEFGHIJKLMNOPQRSTUVWXYZ$

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Húffefeld, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$
\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots
$$

(3.1)

calligraphic: $ABCDFGHJIKLMN\O\PQRSTUWXYZ$
greek: $\Gamma\Delta\Theta\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega$

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure ρ to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma, a_k) \text{Res}(f, a_k) \quad \pi = 3.1415926 \ldots$$

(3.1)

calligraphic: $\mathbb{A} \mathbb{B} \mathbb{C} \mathbb{D} \mathbb{E} \mathbb{F} \mathbb{G} \mathbb{H} \mathbb{I} \mathbb{J} \mathbb{K} \mathbb{L} \mathbb{M} \mathbb{N} \mathbb{O} \mathbb{P} \mathbb{Q} \mathbb{R} \mathbb{S} \mathbb{T} \mathbb{U} \mathbb{V} \mathbb{W} \mathbb{X} \mathbb{Y} \mathbb{Z}$
greek: $\Gamma\Delta\Theta\Xi\Psi\Upsilon\Phi\Omega$

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüpf Schmeidler (1989), reconfigure Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by G. A. Edgar and P. J. Yerger, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.

Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_G f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots$$

(3.1)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüpf Schmeidler, 2004).
Theorem 1 (Residue Theorem) Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(y \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \int_G f(z) \, dz = \sum_{k=1}^m n(y; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots
\]
Test page: typeface=uncial (10pt)

typeface package options:

<table>
<thead>
<tr>
<th>typeface</th>
<th>uncial</th>
</tr>
</thead>
<tbody>
<tr>
<td>fontencoding</td>
<td>default (T1)</td>
</tr>
<tr>
<td>textfigures</td>
<td>default</td>
</tr>
<tr>
<td>inputencoding</td>
<td>default (utf8)</td>
</tr>
<tr>
<td>sansfamily</td>
<td>default</td>
</tr>
<tr>
<td>texcomp</td>
<td>default (full)</td>
</tr>
<tr>
<td>monofamily</td>
<td>default</td>
</tr>
<tr>
<td>fontloadorder</td>
<td>default</td>
</tr>
<tr>
<td>mathfamily</td>
<td>default</td>
</tr>
<tr>
<td>printinfo</td>
<td>true</td>
</tr>
<tr>
<td>symbolsfamily</td>
<td>false</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family</th>
<th>Typeface</th>
<th>TeX Name</th>
<th>em size</th>
<th>ex size</th>
<th>scale</th>
<th>scale time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roman</td>
<td>Artificial Uncial</td>
<td>auncl10</td>
<td>10.000pt</td>
<td>6.0278pt</td>
<td>1.0000</td>
<td>not scaled</td>
</tr>
<tr>
<td>Sans</td>
<td>Default</td>
<td>auncl10</td>
<td>10.000pt</td>
<td>6.0278pt</td>
<td>1.0000</td>
<td>not scaled</td>
</tr>
<tr>
<td>Writer</td>
<td>Default</td>
<td>auncl10</td>
<td>10.000pt</td>
<td>6.0278pt</td>
<td>1.0000</td>
<td>not scaled</td>
</tr>
<tr>
<td>Math</td>
<td>Default</td>
<td>cmr12at13.99994pt</td>
<td>13.708pt</td>
<td>6.0278pt</td>
<td>1.4000</td>
<td>load time</td>
</tr>
<tr>
<td>Symbols</td>
<td>Default</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\textit{Normal}:
\begin{align*}
\text{абвгдєжıklmnopqrstuvwxyzцчшщзччче
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

\[
\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926\ldots
\]

![calligraphic characters]

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Test page: **typeface=urwbookman (10pt)**

Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$
\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots
$$

(3.1)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüllefeldt, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.

by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüfflefjord, 2004).

\[\Gamma \Delta \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega \]

\[\alpha \beta \gamma \delta \epsilon \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \omicron \pi \rho \sigma \tau \upsilon \chi \psi \omega \]

These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.

by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüfflefjord, 2004).

\[\Gamma \Delta \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega \]

\[\alpha \beta \gamma \delta \epsilon \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \omicron \pi \rho \sigma \tau \upsilon \chi \psi \omega \]

These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.

by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüfflefjord, 2004).

This concludes the first section of the document, introducing the theoretical framework of the theories under discussion.
Theorem 1 (Residue Theorem) Let f be analytic in the region G which does not pass through any of the points a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926\ldots$$

(3.1)
by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time. These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüfflefjord, 2004). Schmeidler (1989), reconfigure.

Theorem 1 (Residue Theorem) Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \oint f = \sum_{k=1}^{m} n(\alpha; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots
\]

calligraphic: \(ABCDEFGHIJKLMNOPQRSTUVWXYZ \)

greek: \(\Gamma\Delta\Theta\Lambda\Xi\Psi\Omega \alpha\beta\gamma,\delta\varepsilon\zeta\eta\theta\iota\kappa,\lambda\mu\nu\pi\rho\sigma\tau\upsilon\phi\chi\psi\omega \)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure \(p \) to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f(z) \, dz = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k)$$

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual behaviour often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hülffelfjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k)
\]

\(\pi = 3.1415926 \ldots \) \hspace{1cm} (3.1)

calligraphic: \(ABCDEFGHIJKLMNOPQRSTUVWXYZ \)
greek: \(\Gamma\Delta\Theta\Xi\Pi\Sigma\Upsilon\Phi\Omega \)

Rank-dependent utility theories, introduced for objective probabilities by Quigg (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure \(p \) to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Höffelefnd, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926\ldots$$

(3.1)

calligraphic: \[\mathcal{A}\mathcal{B}\mathcal{C}\mathcal{D}\mathcal{E}\mathcal{F}\mathcal{G}\mathcal{H}\mathcal{I}\mathcal{J}\mathcal{K}\mathcal{L}\mathcal{M}\mathcal{N}\mathcal{O}\mathcal{P}\mathcal{Q}\mathcal{R}\mathcal{S}\mathcal{T}\mathcal{U}\mathcal{V}\mathcal{W}\mathcal{X}\mathcal{Y}\mathcal{Z}\]
greek: \[\Gamma\Delta\Theta\Lambda\Xi\Pi\Psi\Omega\quad \alpha\beta\gamma, \delta\varepsilon\zeta\theta\iota\kappa\lambda\mu\nu\pi\rho\sigma\tau\upsilon\phi\chi\psi\omega\]

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Haffesfeld, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Test page: typeface=adobebembo (10pt)

typeface package options:

<table>
<thead>
<tr>
<th>Package Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>typeface</td>
<td>adobebembo</td>
</tr>
<tr>
<td>fontencoding</td>
<td>default (T1)</td>
</tr>
<tr>
<td>textfigures</td>
<td>default</td>
</tr>
<tr>
<td>sanstypeface</td>
<td>default</td>
</tr>
<tr>
<td>monotypeface</td>
<td>default</td>
</tr>
<tr>
<td>mathtypeface</td>
<td>default</td>
</tr>
<tr>
<td>symbolstypface</td>
<td>default</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family</th>
<th>Typeface</th>
<th>\TeX\ Name</th>
<th>em size</th>
<th>ex size</th>
<th>scale</th>
<th>scale time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roman</td>
<td>Adobe Bembo</td>
<td>pbr8t</td>
<td>10.000pt</td>
<td>3.9600pt</td>
<td>1.0000</td>
<td>not scaled</td>
</tr>
<tr>
<td>Sans SF</td>
<td>Default</td>
<td>ecss1000</td>
<td>8.9100pt</td>
<td>3.9600pt</td>
<td>0.8912</td>
<td>load time</td>
</tr>
<tr>
<td>Typewriter</td>
<td>Default</td>
<td>ectt1000</td>
<td>9.6573pt</td>
<td>3.9600pt</td>
<td>0.9200</td>
<td>load time</td>
</tr>
<tr>
<td>Math</td>
<td>Default</td>
<td>cmr9at9.19739pt</td>
<td>9.4528pt</td>
<td>3.9600pt</td>
<td>0.9197</td>
<td>load time</td>
</tr>
<tr>
<td>Symbols</td>
<td>Default</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>load time</td>
</tr>
</tbody>
</table>

‘rm’ family: Adobe Bembo

Normal: abcdefghijklmnopqrstuvwxyz ct st th ff fi fj fl ffi ffl ft ij æ œ ö ˜e wavaw large footnotesize 0123456789

Bold: abcdefghijklmnopqrstuvwxyz ct st th ff fi fj fl ffi ffl ft ij æ œ ö ˜e wavaw large footnotesize 0123456789

Italic: abcdefghijklmnopqrstuvwxyz ct st th ff fi fj fl ffi ffl ft ij æ œ ö ˜e wavaw large footnotesize 0123456789

Slant: abcdefghijklmnopqrstuvwxyz ct st th ff fi fj fl ffi ffl ft ij æ œ ö ˜e wavaw large footnotesize 0123456789

Smallcaps: abcdefghijklmnopqrstuvwxyz ct st th ff fi fj fl ffi ffl ft ij æ œ ö ˜e wavaw large footnotesize 0123456789

Variants: Light Condensed Medium Semi-bold Bold Bold-extended BOLD—SMALLCAPS Extra-bold

Plain numerals:

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Italic</th>
<th>Bold</th>
<th>Bold Italics</th>
<th>Punctuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math:</td>
<td>0123456789</td>
<td>0123456789</td>
<td>0123456789</td>
<td>0123456789</td>
<td>$% \ldots ; & !#$ = () + -- --</td>
</tr>
<tr>
<td>{linenums}</td>
<td>0123456789</td>
<td>0123456789</td>
<td>0123456789</td>
<td>0123456789</td>
<td>$% \ldots ; & !#$ = () + -- --</td>
</tr>
<tr>
<td>{textnums}</td>
<td>0123456789</td>
<td>0123456789</td>
<td>0123456789</td>
<td>0123456789</td>
<td>$% \ldots ; & !#$ = () + -- --</td>
</tr>
<tr>
<td>\oldstylenums</td>
<td>0123456789</td>
<td>0123456789</td>
<td>0123456789</td>
<td>0123456789</td>
<td>$% \ldots ; & !#$ = () + -- --</td>
</tr>
<tr>
<td>\oldstylenums (TS1)</td>
<td>0123456789</td>
<td>0123456789</td>
<td>0123456789</td>
<td>0123456789</td>
<td>$% \ldots ; & !#$ = () + -- --</td>
</tr>
</tbody>
</table>

Theorem 1 (Residue Theorem) Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926\ldots
\]

(3.1)

greek: ΓΔΘΞΠΣΤΥΦΩ α\(\beta\)γδεζηθικ.λμνξπρσςτυφχψω

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure \(p \) to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellberg, 1961; Lichtenstein & Slovic, 1971; Hüfflefeld, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Test page: typeface=adobecaslon (10pt)

typeface package options:

<table>
<thead>
<tr>
<th>typeface</th>
<th>fontencoding</th>
<th>default (T1)</th>
<th>textfigures</th>
<th>inputencoding</th>
<th>default (utf8)</th>
<th>sanstypeface</th>
<th>default</th>
<th>textcomp</th>
<th>default (full)</th>
<th>monotypeface</th>
<th>fontloadorder</th>
<th>default</th>
<th>mathtypeface</th>
<th>default</th>
<th>printinfo</th>
<th>true</th>
<th>symbolstypeface</th>
<th>default</th>
<th>debug</th>
<th>false</th>
</tr>
</thead>
</table>

Family	Typeface	TeX Name	em size	ex size	scale	scale time
Roman | Adobe Caslon | pacr8t | 10.000pt | 4.2000pt | 1.0000 | not scaled |
Typewriter | Default | ectt1000 at 9.75723pt | 10.242pt | 4.2000pt | 0.9757 | load time |
Math | Default | cmr10at9.75479pt | 9.7548pt | 4.2000pt | 0.9755 | load time |
Symbols | Default | load time |

'rm' family: Adobe Caslon

Normal: abcdefghijklmnopqrstuvwxyz ct st th ff fi fj fl ffi ffl ft ij æ œ ö ˜e wavaw

Large: abcdefghijklmnopqrstuvwxyz ct st th ff fi fj fl ffi ffl ft ij æ œ ö ˜e WAVAW 0123456789

Italic: abcdefghijklmnopqrstuvwxyz ct st th ff fi fj fl ffi ffl ft ij æ œ ö ˜e WAVAW 0123456789

Small caps: abcdefghijklmnopqrstuvwxyz ct st th ff fi fj fl ffi ffl ft ij æ œ ö ˜e WAVAW 0123456789

Variants: Light Condensed Medium Semi-bold Bold Bold-extended BOLD SMALLCAPS Extra-bold

Plain numerals: 0123456789

Math:

Math: 0123456789

Greek: Γ Δ Θ Ψ Φ Ω

rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schneider (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hufelfjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.

\[\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \]

(3.1)

calligraphic: ABCDEFGHIJKLMNOPQRSTUVWXYZ

greek: ΓΔΘΨΦΩ

\[\alpha \beta \gamma \delta \varepsilon \theta \varnothing \lambda \mu \nu \pi \rho \sigma \tau \upsilon \phi \chi \psi \omega \]

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schneider (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hufelfjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.

acegmnopqrstuvwxyzacgmnopqrstuvwxyzacgmnopqrstuvwxyzacgmnopqrstuvwxyz acgmnopqrstuvwxyzacgnop
Test page: `typeface=adobegaramond` (10pt)

typeface package options:

<table>
<thead>
<tr>
<th>Font Family</th>
<th>Typeface</th>
<th>Package Options</th>
<th>Text Figures</th>
<th>Font Encodings</th>
<th>Textcomp</th>
<th>Font Load Order</th>
<th>Math Typeset</th>
<th>Print Info</th>
<th>Symbol Typeset</th>
<th>Debug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family</td>
<td>Typeface</td>
<td>TEX Name</td>
<td>em size</td>
<td>ex size</td>
<td>scale</td>
<td>scale time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roman</td>
<td>Adobe Garamond</td>
<td>padr8t</td>
<td>10.000pt</td>
<td>3.9700pt</td>
<td>1.0000</td>
<td>not scaled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sans Serif</td>
<td>Default</td>
<td>eccs1000 at 8.93463pt</td>
<td>8.9325pt</td>
<td>3.9700pt</td>
<td>0.8935</td>
<td>load time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typewriter</td>
<td>Default</td>
<td>ectt1000 at 9.22287pt</td>
<td>9.6816pt</td>
<td>3.9700pt</td>
<td>0.9223</td>
<td>load time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math</td>
<td>Default</td>
<td>cmr9 at 9.22073pt</td>
<td>9.4768pt</td>
<td>3.9700pt</td>
<td>0.9221</td>
<td>load time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

'rm' family: Adobe Garamond

Normal: abcdefghijklmnopqrstuvwxyz ct st th ff fi fl ff fl ft ij x æ ø wawaw

Bold: abcdefghijklmnopqrstuvwxyz ct st th ff fi fl ff fl ft ij x æ ø wawaw

Italic: abcdefghijklmnopqrstuvwxyz ct st th ff fi fl ff fl ft ij x æ ø wawaw

Smallcaps: abcdefghijklmnopqrstuvwxyz ct st th ff fi fl ff fl ft ij x æ ø wawaw

Variants: Light Condensed Medium Semi-bold Bold Bold-extended BOLD-SMALLCAPS Extra-bold

Plain numerals: 0123456789

Math:

\[
\frac{1}{2\pi} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926\ldots
\]

(3.1)

calligraphic: ABCDEFGHIJKLMNOPQRSTUVWXYZ

greek: ΓΔΘΞΠΣΦΨΩ αβγδεζηθικλμνξπρστυφχψω

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure \(p \) to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hufelfjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots
\]
Test page: typeface=adobejanson (10pt)

typeface package options:

<table>
<thead>
<tr>
<th>Package</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>typeface</td>
<td>adobejanson</td>
</tr>
<tr>
<td>textfigures</td>
<td>default</td>
</tr>
<tr>
<td>sanstypeface</td>
<td>default</td>
</tr>
<tr>
<td>monotypeface</td>
<td>default</td>
</tr>
<tr>
<td>mathmodeface</td>
<td>fourier</td>
</tr>
<tr>
<td>symboltypeface</td>
<td>default</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family</th>
<th>Typeface</th>
<th>Name</th>
<th>em size</th>
<th>ex size</th>
<th>scale</th>
<th>scale time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roman</td>
<td>Adobe Janson</td>
<td>pjn8t</td>
<td>10.000pt</td>
<td>4.3300pt</td>
<td>1.0000</td>
<td>not scaled</td>
</tr>
<tr>
<td>Sans Serif</td>
<td>Default</td>
<td>ecss1000 at 9.74487pt</td>
<td>9.7425pt</td>
<td>4.3300pt</td>
<td>0.9745</td>
<td>load time</td>
</tr>
<tr>
<td>Typewriter</td>
<td>Default</td>
<td>ectt1000 at 10.0592pt</td>
<td>10.559pt</td>
<td>4.3300pt</td>
<td>1.0059</td>
<td>load time</td>
</tr>
<tr>
<td>Math</td>
<td>Fourier</td>
<td>furt8tat9.84085pt</td>
<td>8.6599pt</td>
<td>4.3300pt</td>
<td>0.9841</td>
<td>load time</td>
</tr>
<tr>
<td>Symbols</td>
<td>Default</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

'rm' family: Adobe Janson

Normal: abcdefghijklmnopqrstuvwxyz

Bold: abedefghijklmnopqrstuvwxyz

Italic: abedefghijklmnopqrstuvwxyz

Slant: abedefghijklmnopqrstuvwxyz

Smallcaps: abedefghijklmnopqrstuvwxyz

Variants: Light Condensed Medium Semi-bold Bold Bold-extended BOLD-SMALLCAPS Extra-bold

Plain numerals: 0123456789

\textstyle: 0123456789

\textstyle: 0123456789

\textstyle: 0123456789

Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926\ldots$$

blackboard: ABCDEFGHIJKLMNOPQRSTUVWXYZ
calligraphic: ABCDEFGHIJKLMNOPQRSTUVWXYZ
greek: \Gamma\Delta\Theta\Pi\Xi\Psi\Omega αβγδεζηθϑικλμνξπϖρσςτφψω

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Höffefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Test page: typeface=adobejenson (10pt)

Theorem 1 (Residue Theorem) Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(y \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_i \) and if \(y = \infty \) in then

\[
\frac{1}{2\pi i} \int_G f = \sum_{k=1}^{m} n(y; a_k) \text{Res}(f; a_k)
\]

(3.1)

blackboard: ABCDEFGHIJKLMNOPQRSTUVWXYZ

calligraphic: \(\mathcal{ABC} \mathcal{DEF} \mathcal{GHI} \mathcal{JKLMNOPQRSTUVWXYZ} \)

fraktur: \(\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \)

greek: \(\Gamma \Delta \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega \)

Rank-dependent utility theories, introduced for objective probabilities by Quigglin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure \(p \) to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellberger, 1961; Lichtenstein & Slovic, 1971; Hüfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_i \) and if \(\gamma \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \int_\gamma f = \sum_{k=1}^{m} \pi(n; a_k) \text{Res}(f; a_k)
\]

(3.1)

\[
\pi = 3.1415926 \ldots
\]

blackboard: \(ABCDEFGHIJKLMNOPQRSTUVWXYZ \)

calligraphic: \(ABCDEFGHIJKLMNOPQRSTUVWXYZ \)

greek: \(\Gamma \Delta \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega \)

Rank-dependent utility theories, introduced for objective probabilities by Quigg (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure \(p \) to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Höffler, 2004). These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.

\[
\alpha \gamma \delta \epsilon \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \omicron \pi \rho \sigma \tau \upsilon \phi \chi \psi \omega
\]
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$
\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \text{for } \gamma \approx 0 \text{ in } G
$$

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüllefeldjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Test page: typeface=adobeminionpro (1oPt)

typeface package options:

<table>
<thead>
<tr>
<th>Family</th>
<th>Typeface</th>
<th>T\X Name</th>
<th>em size</th>
<th>ex size</th>
<th>scale</th>
<th>scale time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roman</td>
<td>Adobe Minion Pro</td>
<td>MinionPro-Regular-osf-ti at 10.opt</td>
<td>10.000pt</td>
<td>4.3800pt</td>
<td>1.0000</td>
<td>not scaled</td>
</tr>
<tr>
<td>Sans Serif</td>
<td>Default</td>
<td>ecss1000 at 9.85733pt</td>
<td>9.8549pt</td>
<td>4.3800pt</td>
<td>0.9857</td>
<td>load time</td>
</tr>
<tr>
<td>Typewriter</td>
<td>Default</td>
<td>ectl1000 at 10.17532pt</td>
<td>10.681pt</td>
<td>4.3800pt</td>
<td>1.0175</td>
<td>load time</td>
</tr>
</tbody>
</table>

Symbols

| Symbols | \(\text{family}\) | AdobeMinionPro | MinionPro – Regular – osf – tialto.opt | 10.000pt | 4.3800pt | 1.0000 | not scaled |

'rm' family: Adobe Minion Pro

Normal:

regular: abcdefghijklmnopqrstuvwxyz

bold: abcdefghijklmnopqrstuvwxyz

italic: abcdefghijklmnopqrstuvwxyz

slant: abcdefghijklmnopqrstuvwxyz

smallcaps: abcdefghijklmnopqrstuvwxyz

script:

fancier: abcdefghijklmnopqrstuvwxyz

plain

\(\text{variants:} \ Markdown:\text{LightCondensedMedium} \ SemiBold \ Bold \ BoldExtended \ BoldSmallCaps \ ExtraBold\)

Plain numerals:

<table>
<thead>
<tr>
<th>Normal</th>
<th>Italic</th>
<th>Bold</th>
<th>Bold Italic</th>
<th>Punctuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0123456789</td>
<td>0123456789</td>
<td>0123456789</td>
<td>0123456789</td>
<td>$% \ldots ? & ! # = (_)+---$</td>
</tr>
<tr>
<td>Math</td>
<td>0123456789</td>
<td>0123456789</td>
<td>0123456789</td>
<td>$%\ldots ? & ! # = (_)+---$</td>
</tr>
<tr>
<td>{liningnums}</td>
<td>0123456789</td>
<td>0123456789</td>
<td>0123456789</td>
<td>$% \ldots ? & ! # = (_)+---$</td>
</tr>
<tr>
<td>{textnums}</td>
<td>0123456789</td>
<td>0123456789</td>
<td>0123456789</td>
<td>$% \ldots ? & ! # = (_)+---$</td>
</tr>
<tr>
<td>{oldstylenums}</td>
<td>0123456789</td>
<td>0123456789</td>
<td>0123456789</td>
<td>$% \ldots ? & ! # = (_)+---$</td>
</tr>
<tr>
<td>{oldstylenums} (TSi):</td>
<td>0123456789</td>
<td>0123456789</td>
<td>0123456789</td>
<td>$% \ldots ? & ! # = (_)+---$</td>
</tr>
</tbody>
</table>

\textbf{Theorem 1 (Residue Theorem)}

Let \(f\) be analytic in the region \(G\) except for the isolated singularities \(a_1, a_2, \ldots, a_m\). If \(y\) is a closed rectifiable curve in \(G\) which does not pass through any of the points \(a_k\) and if \(y \circ 0 \in G\) then

\[\frac{1}{2\pi i} \int_C f = \sum_{k=1}^{m} n(y, a_k) \text{Res}(f; a_k) \]

\[\pi = 3.1415926 \ldots \]

(3.1)

blackboard: \(\text{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\)

caligraphic: \(\text{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\)

fraktur: \(\text{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\)

greek: \(\text{GammaDeltaThetaXiPsi}\)

Rank-dependent utility theories, introduced for objective probabilities by Quigg\(1981; 1982\) and for subjective distributions by Schmeidler (1989), reconfigure \(p\) to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Al\(ais, 1953\); Ellsberg, 1961; Lichtenstein & Slovic, 1971; H\äufle\(fod\, 2004)\). These theories accomplish their task in two interrelated ways: first by discarding the “linearization of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If y is a closed rectifiable curve in G which does not pass through any of the points a_k and if $y = 0$ in G then

$$\frac{1}{2\pi i} \int_G f = \sum_{k=1}^m n(y; a_k) \text{Res}(f; a_k)$$

(3.1)

blackboard: $ABCDEFGHJKLMNPQRSTUVWXYZ$

calligraphic: $\Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega$

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from those predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hyperford, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad (3.1)$$

calligraphic: $\text{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$
greek: $\Gamma\Delta\Theta\Xi\Pi\Sigma\Upsilon\Phi\Omega$

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.

The theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by (TS1):

$$\text{liningnums}$$

Math Plain numerals: 0123456789

Bold: 0123456789

Bold-extended: 0123456789

Italics: 0123456789

Smallcaps: 0123456789

Variants: 0123456789

MathTime2Professional

Roman

Sans Serif

Symbols

Normal

Large

Bold

Bold Italics

Punctuation

Plain numerals: 0123456789

Math: 0123456789

liningnums: 0123456789

textnums: 0123456789

Oldstylenums(TS1): 0123456789

footnotesize

Large

foo
Test page: typeface=hoefler text (rpt)

typeface package options:

typeface hoefler text fontencod ing defa ult (T1)
textfigures default inputenc oding defa ult (utf8)
sans typography default tex tocomp defa ult (full)
monotype typography default font load o der defa ult
math typography default printinfo true
symbol typography default debug false

Family Typeface \TeX Name em size ex size scale scale time
Roman Hoefler Text chtr8t 10.000pt 4.2500pt 1.0000 not scaled
Sans Serif Default ecss1000 at 9.5625pt 4.2500pt 0.9565 load time
Typewriter Default ectl1000 at 9.87335pt 4.2500pt 0.9873 load time
Math Default cmr10 at 9.8711pt 4.2500pt 0.9871 load time
Symbols Default load time

'rm' family: Hoefler Text
Normal: abcdefghijklmnopqrstuvwxyz ct st th ff fi fj fl ffi ffl ft ij æ œ ö ˜e wavaw
Bold: abcdefghijklmnopqrstuvwxyz ct st th ff fi fj fl ffi ffl ft ij æ œ ö ˜e wavaw
Italic: abcdefghijklmnopqrstuvwxyz ct st th ff fi fj fl ffi ffl ft ij æ œ ö ˜e wavaw
Slant: abcdefghijklmnopqrstuvwxyz ct st th ff fi fj fl ffi ffl ft ij æ œ ö ˜e wavaw
Smallcaps: abcdefghijklmnopqrstuvwxyz ct st th ff fi fj fl ffi ffl ft ij æ œ ö ˜e wavaw
Latin Small Cased: abcdefghijklmnopqrstuvwxyz ct st th ff fi fj fl ffi ffl ft ij æ œ ö ˜e wavaw

Plain numerals: 0123456789
Math: \oldstylenums 0123456789
\textstyle 0123456789
\textstylenums 0123456789
\liningnums 0123456789
\mathstylenums 0123456789
\oldstylenums (TS1): 0123456789
\textnums 0123456789
\liningnums 0123456789
\textstylenums 0123456789
\oldstylenums 0123456789
\textnums 0123456789
\liningnums 0123456789
\textstylenums 0123456789
\oldstylenums 0123456789
\textnums 0123456789
\liningnums 0123456789
\textstylenums 0123456789
\oldstylenums 0123456789
\textnums 0123456789
\liningnums 0123456789
\textstylenums 0123456789

Theorem 1 (Residue Theorem) Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \int_{\gamma} f(z) \, dz = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots
\]

(3.1)

calligraphic: \(ABCDFGHJJKLMNOPQRSTUVWXYZ \)
greek: \(\Gamma \Delta \Theta \Lambda \Pi \Sigma \Upsilon \Phi \Psi \Omega \)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüllefeld, 2004). These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then
\[
\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots
\]
Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k)$$

(3.1)

calligraphic: $\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$
greek: ΓΔΘΞΠΣΤΦΨΩ αβγδεζηθικ.λμνξπρστφψχψ

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1982; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1965; Lichtenstein & Slovic, 1971; Hüffelford, 2004). These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
available to individuals at decision-making time.

probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information

Hüfflefjord, 1953 that predicted by classical expected utility theories (for example, see Allais, 1989; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Höffeld, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the

which does not pass through any of the points

§ ≈ \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots (3.1)
calligraphic: ABCDEFGHIJKLMNOPQRSTUVWXYZ
greek: ΓΔΘΞΠΣΤΦΨΩ αβγδεζηθικλμνξπρστφψω

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Höffeld, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.

acegmnopqrstuvwxyzacegnop
Theorem 1 (Residue Theorem) Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \oint_\gamma f = \sum_{k=1}^{m} n(\gamma; a_k) \operatorname{Res}(f; a_k) \quad \pi = 3.141592 \ldots
\]

(3.1)

calligraphic: \(ABCDEFGHIJKLMNOPQRSTUVWXYZ \)
greek: \(\Gamma, \Delta, \Theta, \Xi, \Psi, \Omega, \alpha, \beta, \gamma, \delta, \epsilon, \zeta, \theta, \iota, \kappa, \lambda, \mu, \nu, \pi, \rho, \sigma, \tau, \phi, \chi, \psi \)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1982) and for subjective distributions by Schmeidler (1989), reconfigure \(p \) to accommodate findings that actual choice behaviors often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hufreiford, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.

\(a, b, c, \ldots, x, y, z \) acegmnopqrsuvwxyzacegmnopqrsuvwxyzaacegmnopqrsuvwxyzacegnop
Let

Theorem 1 (Residue Theorem) Let \(f \) be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(\gamma \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(\gamma \approx 0 \) in \(G \) then

\[
\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k)
\]

(3.1)

calligraphic: \(ABCDEFGHIJKLMNOPQRSTUVWXYZ \)
greek: \(\Gamma\Delta\Theta\Xi\Sigma\Upsilon\Phi\Omega \)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure \(p \) to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1965; Lichtenstein & Slovic, 1971; H"uflefeld, 2004). These theories accomplish their task in two interrelated ways: first by discarding the "linearity of the probabilities" restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Test page: typeface=linotypetimesten (10pt)

typeface package options:

typeface linotypetimesten fontencoding default (T1)

textfigures default inputencoding default (utf8)

sansstypeface default textcomp default (full)

mathstypetypeface mttpro printinfo true

symbolstypetypeface default debug false

Family Typeface T\TeX\ Name em size ex size scale scale time

Roman Linotype Times Ten ltr8t 10.000pt 4.7000pt 1.0000 not scaled

Sans Serif Default ecss1000 at 10.57755pt 10.575pt 4.7000pt 1.0578 load time

Typewriter Default ectl1000 at 10.91888pt 11.462pt 4.7000pt 1.0919 load time

Math MathTime2Professional ecmt1095at10.91888pt 10.856pt 4.7000pt 1.0919 load time

Symbols Default

‘rm’ family: Linotype Times Ten

Normal: abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ

Bold: abcdEFGHIJKLMNOPQRSTUVWXYZ abcDEFGHIJKLMNOPQRSTUVWXYZ

Italic: abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ

Slant: abcdEFGHIJKLMNOPQRSTUVWXYZ abcDEFGHIJKLMNOPQRSTUVWXYZ

SMALLCAPS: ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdEFGHIJKLMNOPQRSTUVWXYZ

Variants: \text{Light Condensed Medium Semi-bold Bold Bold-extended BOLD-SMALLCAPS Extra-bold}

Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma;a_k) \text{Res}(f;a_k) \quad \pi = 3.1415926\ldots$$

\text{calligraphic: } ABCDEFGHIJKLMNOPQRSTUVWXYZ

\text{greek: } \Gamma\Delta\Theta\Xi\Pi\Sigma\Tau\Phi\Psi\Omega\quad \alpha\beta\gamma\delta\epsilon\zeta\theta\iota\kappa\lambda\mu\nu\pi\rho\sigma\tau\upsilon\phi\chi\psi\omega

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumption, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$
\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k) \quad \pi = 3.1415926 \ldots \tag{3.1}
$$

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hülfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
Theorem 1 (Residue Theorem) Let
\[f \]
be analytic in the region \(G \) except for the isolated singularities \(a_1, a_2, \ldots, a_m \). If \(y \) is a closed rectifiable curve in \(G \) which does not pass through any of the points \(a_k \) and if \(y \neq 0 \) in \(G \) then
\[
\frac{1}{2\pi i} \int_C f = \sum_{k=1}^{m} n(y; a_k) \text{Res}(f; a_k)
\]

(3.1)

blackboard: \(ABCDEFGHIJKLMNOPQRSTUVWXYZ \)
calligraphic: \(ABCDEFGHIJKLMNOPQRSTUVWXYZ \)
fraktur: \(ABCDEFGHIJKLMNOPQRSTUVWXYZ \)
greek: \(\Gamma \Delta \Sigma \Phi \Psi \Omega \)

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein \\& Slovic, 1971; Hüffeldjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.
These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüfflefjord, 2004). Schmeidler (1989), reconfigure

Theorem 1 (Residue Theorem) Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \rightarrow 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \text{Res}(f; a_k)$$

$$\pi = 3.1415926$$

Rank-dependent utility theories, introduced for objective probabilities by Quiggin (1981; 1982) and for subjective distributions by Schmeidler (1989), reconfigure p to accommodate findings that actual choice behaviours often differ systematically from that predicted by classical expected utility theories (for example, see Allais, 1953; Ellsberg, 1961; Lichtenstein & Slovic, 1971; Hüfflefjord, 2004). These theories accomplish their task in two interrelated ways: first by discarding the “linearity of the probabilities” restriction imposed by the standard rationality assumptions, second by employing more of the information available to individuals at decision-making time.