
I Technik und Informatik

Bern University
of Applied Sciences

LATEX-Indexer
Automatically Generating Indexes for Latex Documents

Course of study Bachelor of Science in Computer Science
Author David Degenhardt and Frederik Leyvraz
Advisor Dr. Simon Kramer

Version 1.0 of June 13, 2025

Abstract

The LATEX-Indexer is a free, FLOSS tool that automates index creation, reducing
the time it takes to create an index. An index helps the reader find significant
mentions of topics. To this day however, indices are written by hand with barely
any automation outside ofmechanical simplifications concerning the layout. Ad-
dressing the issue, this project demonstrates a 80% reduction in indexing time is
possible, by suggesting terms, allowing to track variants and automating the tag-
ging. Future work could explore graphical interfaces, broader format support,
and AI-driven term extraction.

iii

Contents

Abstract iii

List of Figures vi

1. Introduction 1
1.1. Initial Situation . 1

1.1.1. Manual IndexingWorkflow 1
1.1.2. LaTeX . 1
1.1.3. MakeIndex and Latexmk 1
1.1.4. PreviousWork . 2

1.2. Project Goal . 3

2. Specification 4
2.1. Priorities . 4

2.1.1. Product Goal . 4
2.2. System Delimitation . 4

2.2.1. System Environment (Statics) 4
2.2.2. Process Environment (Dynamics) 4

2.3. Requirements . 4
2.3.1. Functional Requirements (Added Value) 4
2.3.2. Non-Functional Requirements 5
2.3.3. Non-Goals . 5

3. Implementation 7
3.1. Architecture . 7

3.1.1. Goals . 7
3.1.2. Solution Architecture . 7

3.2. Processes, Project Management 10
3.2.1. Methodological Considerations 10
3.2.2. Stakeholders and associated Scrum-Roles 11
3.2.3. Scrum Adaptations . 12

3.3. Results: Scrum-Artifacts . 13
3.3.1. Product Vision . 13
3.3.2. Timeline . 14
3.3.3. Product Backlog . 14
3.3.4. Sprint 1 . 14
3.3.5. Sprint 2 . 16

iv

Contents

3.3.6. Sprint 3 . 17
3.3.7. Sprint 4 . 18
3.3.8. Sprint 5 . 19
3.3.9. Sprint 6 . 19
3.3.10. Project Setup Review . 19
3.3.11. Scrum review . 20

4. Deployment and Integration 23
4.1. Licensing . 23
4.2. Deployment . 23

4.2.1. Building from Source . 23
4.3. User Manual . 23

4.3.1. Prerequisites . 23
4.3.2. Installation . 23
4.3.3. Usage . 24
4.3.4. Hint . 24

5. Results and Discussion 25
5.1. Results . 25

5.1.1. Estimated Productivity Gain 25
5.2. Discussion . 26

5.2.1. Conclusion . 26
5.2.2. FutureWork . 27

Bibliography 29

Index 31

A. Project Description 32

v

List of Figures

1.1. A typical workflow when creating indexes 2

2.1. The system context diagram corresponds to a Use-Case diagram . 6

3.1. The container diagram, each so-called container is separately de-
ployable . 8

3.2. The component diagram . 9
3.3. Assessment of PM-Approach Questionnaire 11
3.4. Unrefined and refined backlog items. 15
3.5. Backlog items which are done or currently worked on. 16

vi

1. Introduction

1.1. Initial Situation

An index in the back of a book is muchmore than just an alphabetic list of words
and their appearance in the book. It organizes topics and allows the reader to
find useful mentions of the concept instead of simply listing all occurrences.

Indexes were historically painstakingly compiled by hand, requiring indexers to
read the text carefully and catalog themeaningful terms. With the introductionof
typesetting systems like LaTeX, the process remains a manual task: The authors
must identify and tag the relevant terms themselves.

1.1.1. Manual Indexing Workflow

Indexing a document follows the steps outlined in figure 1.1.

First the user has to set up their indexing tools. Second, they have to read the
document and decide which words to include. The words need to be marked
individually at every occurrence. Last, the document has to be rendered with
the index included.

1.1.2. LaTeX

LaTeX is a typesetting system commonly used to produce academic documents.
In contrast to other systems, users do not directly edit the layout and text graph-
ically, but write plain text with markup commands, e. g. \section{Title} to
describe a title. Later, the user calls a LaTeX compiler, who then layouts the doc-
ument and outputs a PDF. LaTeX’ popularity stems from its beautiful layouts and
from a large ecosystem of packages and programs allowing to extend the func-
tionality of LaTeX to e. g. include automaticly generated bibliographies and in-
dexes.

1.1.3. MakeIndex and Latexmk

MakeIndex is a separate program thatworks before and after the LaTeX compiler,
taking specially prepared LaTeX sources and generating a sorted typeset index.

1

1. Introduction

Figure 1.1.: A typical workflow when creating indexes

Even though it automates the mechanical side of index writing, it does not auto-
mate finding and tagging terms. Furthermore, whenmanually using MakeIndex
the user has to recompile the document multiple times.

Latexmk is a tool that automatically recompiles the document with defined pa-
rameters. It detects the need for multiple compilation runs.

1.1.4. Previous Work

The paper introducing the MakeIndex package by Chen and Harrison [1] dis-
cusses indexing and its automation and explains in depth the necessary steps
and considerations. The paper not only describes the MakeIndex package as it
is known and used today, but also proposes an automated system to add index
entries to documents. The authors describe an extension to Emacs, the GNU
text editor, for ”placing index commands in the document”. Even after extensive
searching, this extension could not be found on the internet; current distribu-
tions of MakeIndex do not include it.

Other attempts have been made to automate the addition of indexes to LaTeX
documents [2] [3], however they do not offer the ability to addwords interactively
[4], are stuck in early development [5] or do not parse LaTeX at all [6].

There exists a large body of literature on keyword extraction outside of the spe-
cific application to LaTeX document processing [7] [8].

2

1.2. Project Goal

1.2. Project Goal

In this project, we develop a program, the LATEX-Indexer, that, by using different
approaches to identify relevant terms and automating the tagging process, saves
authors a lot of time while making knowledge more accessible to readers.

3

2. Specification

2.1. Priorities

2.1.1. Product Goal

The primary goal of the proposed LaTeX-Indexer is to save time for authors when
they generate larger indexes for their books. Specifically, the LATEX-Indexer aims
to save the time needed to tag relevant terms and to identify relevant terms. La-
TeX sources distributed over multiple source files must be supported.

2.2. System Delimitation

2.2.1. System Environment (Statics)

The main concern with the system environment is that is very diverse and has
grown over extended periods of time. LaTeX as a language does not exist as a sin-
gular specification, insteadmultiple implementations, additions and dialects ex-
ist. LaTeX is a full programming language, therefore rendering LaTeXmeans ex-
ecuting it. LaTeX (and especially with efforts surrounding LaTeX 3) tries to make
it possible to structure documents semantically, people andmachines alike have
documented their struggle to correctly parse a LaTeX document non-visually.

These factors must be considered during implementation. Different existing li-
braries and applications exist to compile LaTeX.

2.2.2. Process Environment (Dynamics)

The top level diagram, the C4-system-context-diagram explains how the user re-
lates to themain components. All components run locally on the user’smachine.

2.3. Requirements

2.3.1. Functional Requirements (Added Value)

The main aim of the program is to save time. Derived from the given project
description, the following requirements were defined:

4

2.3. Requirements

I Extract the words from a latex source directory that are part of the text con-
tent.

I Generate a frequency distribution of the extracted words, and displaying
the distribution by means of the LaTeX-library PGFplots.

I Let the user define variations for a word. Occurrences of variations in the
text will be treated the same as the original word.

I Let the user define words to be sub-variants of another word, such that
these words are indexed as sub-variants.

I Let the user chose which ones of the words are to be added to the index.

I Let the user chose whether all occurrences of a word are to be indexed, or
whether they want to go through all occurrences manually and decide if it
should be included.

I LaTeX-compiling the resulting index-command augmented LaTeX-source
file so as to obtain the desired indexed LaTeX-document by means of the
LaTeX-helper software MakeIndex.

2.3.2. Non-Functional Requirements

As part of the LaTeX ecosystem, the project will be published under a permissive
license on CTAN and must be compatible to common LaTeX tools and packages.

2.3.3. Non-Goals

For the minimal viable product, this project does explicitly not include:

I Designing and implementing a Graphical User interface,

I Broad integration in existing tooling outside of simple build scripts,

I Support for other formats like Markup or other indexing tools.

A full reproductionof the original project description canbe found in in appendix
A.

5

2. Specification

Figure 2.1.: The system context diagram corresponds to a Use-Case diagram

6

3. Implementation

3.1. Architecture

3.1.1. Goals

The architecture of the indexer is described in the following section. The dia-
grams are modeled using the C4 modeling method. C4 models are divided on
four levels: Context, Containers, Components, and Code. Containers are defined
as separately deployable units, the donot have to be containers in theusual sense.

The focus of architectural decisionswas to keep the indexermodular, extendable,
maintainable. The architecture supports incremental development steps.

External components must be exchangeable.

3.1.2. Solution Architecture

Advantages

Thecurrent architecture ismodular and separates user interaction, external com-
ponents and internal processing well. External components are exchangeable.

Performance, Limited Scalability

Currently, the indexer processes documents sequentially, thismay lead to longer
processing times when using very large documents.

Calling external programs may introduce some latency.

Components

The indexer consists of the UI, a parser and plotter component.

UI

TheUI class provides an interactive command-line user interface for user in- and
output. It has a simple structure with a while-loop that runs until the user quits
or interrupts the program, a scanner which reads user inputs, a little bit of logic

7

3. Implementation

Figure 3.1.: The container diagram, each so-called container is separately deployable

which parses user commands and packages them into the custom Argument in-
ner class such that they can easily be used by the other components, and finally a
switch statement which calls the user-requested command and passes it an array
containing the arguments passed with the command.

Parser

As LaTeX is a programming language, it is not possible to parse it without com-
piling and running the code. Extensive use of packages, most of them developed
and maintained by authors, publishers and institutions just for their own needs
make it difficult to preempt all possible issues.

Currently, there are two parsers available, one is disabled in the code: Pandoc is

8

3.1. Architecture

Figure 3.2.: The component diagram

active and support for detex was implemented. Pandoc is a document converter,
turning virtually any document into another by first converting the inputs to an
intermediate representation. Pandoc is widely used to render LaTeX documents
to other formats than PDF and therefore supportsmost common LaTeX packages
reasonably.

Detex (OpenDetex) is a small command line program shipped with most LaTeX
distributions. One very useful feature of it is, that it indicates the exact source
location of a word. Unfortunately, the errors it made during parsing prevented
us from using it as input.

IndexWriter

The writer searches for all occurrences of a word and replaces them with the
respective index keywords. The writer tries to use detex to find the location of
words, however detex miscounts some lines. This is corrected in a workaround.

Plotter

The plotter visualizes term frequencies and renders them into plots. Upon cre-
ation, the plotter receives a list containing all thewords the parser gathered from
the document. When it is being called to generate a plot, it receives the argu-
ments passed to the program by the user, creates a copy of the list of words and
filters it according to the user’s preferences. It then creates a .tex file with the

9

3. Implementation

user-defined or generic name andwrites latex code for generating a plot with the
latex library PGFplots to it, with a plot point for each word in the list.

Similarly, the plotter is also responsible for listing the user-requested words to
the command line. The same method is used for filtering the list of words in
both cases, but rather than generating latex code, the plotter adds the words to a
formatted string and returns that string to the UI, which can then print it to the
command line.

Testing

The goal of testing software is to guarantee the correctness, performance and
maintainability of software products. To attain these goals we developed unit
tests and did manual end-to-end tests.

3.2. Processes, Project Management

3.2.1. Methodological Considerations

Togaugewhich approach is suited, we considered cultural factors, organizational
aspects, volatility and risk.

As the project’s objectives are variable, the product is suitable for incremental
delivery. We consider the project risks to be manageable even given our very
limited experience (creating indexes by hand is painful in the figurative sense
only). Our team is very small and closely connected through BFH. All involved
persons are interested in exploring different solutions, open to changes and mo-
tivated to use agile methods. We therefore found Scrum to fit the needs of the
project, noting however that we would have to adapt Scrum to our needs, as the
team is very small.

10

3.2. Processes, Project Management

Figure 3.3.: Assessment of PM-Approach Questionnaire

3.2.2. Stakeholders and associated Scrum-Roles

Client

Our client, Simon Kramer, is a researcher, lecturer and in the context of this
project a target author. He will be using the product and therefore is the main
stakeholder. For this reason he also was themain contact personwhenever ques-
tions about potential features arose, that were deemed to important to be called
by the product owner on his own.

Product Owner

DavidDegenhardt is responsible for keeping theProduct Backlogmaintained and
ensuring that the clients needs are adequately represented. He ensures the back-
log is clear, visible, and prioritized based on business value and customer needs.
He assesses the different product backlog items and decides on their usefulness
and importance to evaluate which features are to be included in the next sprint,
in an attempt to maximize the business value of the product.

Scrum-Master

Frederik Leyvraz is “accountable for establishing Scrum as defined […]” [9]. He
makes sure the Scrum Team has a common understanding of Scrum practices

11

3. Implementation

and helps find techniques and methods for teammates to effectively carry out
their work.

Developers

As the team consists of only three people, the product owner and Scrum master
also serve as developers, developing implementation solutions for the required
features and implementing the indexer as well as contributing to Scrum prac-
tices, mainly sprint planning, daily scrum and sprint review.

3.2.3. Scrum Adaptations

Sprint Duration, Velocity

As this project has a fixed deadline, we opted for the shortest (meaningful) sprint
duration of two weeks, giving us six sprints in total, where each sprint is long
enough to achieve meaningful improvements in the project but short enough to
not lose oversight over the items that have to be completed. To be able to esti-
mate the workload and our velocity, we used hours as a basis and fixed twenty
hours per sprint as our velocity, as this seemed like a realistic amount of work we
could take on per week for this project. Items were weighted using the Fibonacci
estimation method since we deemed it to be relatively intuitive and practical for
the velocity we set for our selves.

Daily Scrum

The low velocity allowedus to extend the daily Scrummeetings intervals. Instead
of meeting every day, we met whenever we were both at school, usually leaving
us with 3 meetings per week on Tuesday, Thursday and Friday.

Definition of Ready

The definition of ready (DoR) is a quality gate that all items of the product backlog
must fulfill in order to be “ready”. “Ready” means that the items then may be
selected for the sprint backlog.

Considering we did not have a lot of experience in Scrum, we chose to start with
all INVESTcriteria (Independent, Negotiable,Valuable, Estimable, Small, Testable).
As we are a very small team, we addedUnderstandable as criterion to ensure that
the items are documented in a way more than two people understand.

12

3.3. Results: Scrum-Artifacts

Definition of Done

The definition of done (DoD) is the second quality gate between the state doing
and done. The following criteria were added to our user story template, but we
extended and elaborated on the criteria when needed during backlog refinement
and sprint plannings.

I (Functional requirements met)

I Documented

I Tested

I Accepted by the product owner

As of the time ofwriting, wehave not yet implemented an automated deployment
pipeline and therefore do not include any deployment related criteria in the DoD.

3.3. Results: Scrum-Artifacts

3.3.1. Product Vision

An index in the back of a book is muchmore than just an alphabetic list of words
and their appearance in the book. It organizes topics and allows the reader to
find useful mentions of the concept instead of merely listing all occurrences.

Historically, indexeswere painstakingly compiled by hand, requiring indexers to
read the text carefully and catalog the meaningful terms. With the introduction
of typesetting systems like LaTeX, even when using helpers like MakeIndex, the
process remains a manual task: Authors must identify and tag relevant terms
themselves.

In this project, we develop a program, the LATEX-Indexer, that, by using different
approaches to identify relevant terms and automating the tagging process, saves
authors a lot of time while making knowledge more accessible to readers.

The primary goal of the proposed LaTeX-Indexer is to save time for authors when
they generate larger indexes for their books. Specifically, the LaTeX-Indexer aims
to save the time needed to tag relevant terms and to identify relevant terms. Tex
sources distributed over multiple source files must be supported.

As the project moves along, multiple approaches to keyword extraction are im-
plemented, with first priority given to a frequency-based approach. Other ap-
proaches include using large language models (LLMs commonly referred to as
AI) or other context-based methods.

13

3. Implementation

3.3.2. Timeline

We defined one milestone: The minimum viable product is reached when all re-
quirements as given in the original project description are fulfilled. ie.

I Extracting the words in the .tex files of a LaTeX source directory.

I Generating a frequency distribution of the extracted words, and displaying
the distribution by means of the LaTeX-library PGFplots.

I Letting the user choose which of the extracted words are to be included in
the index.

I Inserting the string ”\index{chosenOne}” into the LaTeX-source file right
after each occurrence of each user-chosen word.

I LaTeX-compiling the resulting index-command augmented LaTeX-source
file.

Date Description
2025-02-17 Start of Semester
2025-03-10 Start of Sprint 1
2025-05-23 Milestone: MinimumViable Product
2025-06-13 Project Due Date

3.3.3. Product Backlog

The product backlog ismaintained onGitLab in the formof issues. Four different
status differentiate unrefined, refined, currently being implemented, and done
backlog items. Three priority levels help organize the backlog. Figures 3.4 and
3.5 give an overview of the product backlog at the time of writing at the end of
the second sprint.

3.3.4. Sprint 1

Sprint Goal

The goal of the first sprint was: Build the solid foundation for the project to grow.

Sprint Backlog

The following user stories were added to the sprint backlog.

14

3.3. Results: Scrum-Artifacts

Figure 3.4.: Unrefined and refined backlog items.

10 - Define Architecture and technology
As a developer I want to understand the architecture and be able to record deci-
sions concerning it.
Priority: high
Weight: 13
Status: done

13 - Extracting words using pandoc
As a user Iwant to be able to extract all thewords in the .tex files of a LaTeX source
directory in order to list and work with them.
Priority: high
Weight: 2
Status: done

17 - Setup Java project and build system
As a developer I want to build the program quickly and automatically so that
builds are the same across all deployments.
Priority: high
Weight: 3
Status: done

15

3. Implementation

Figure 3.5.: Backlog items which are done or currently worked on.

18 - provide CLI interface with options to choose files
As a user I want to be able to LaTeX source directory to the program so that it
knows what to work with.
Priority: high
Weight: 2
Status: done

3.3.5. Sprint 2

Sprint Goal

The goal of the second sprint was: Calculate the frequency distribution of words
in a given document and visualize it.

Sprint Backlog

The following user stories were added to the sprint backlog.

16

3.3. Results: Scrum-Artifacts

23 - Include desired words in an index
As a user I want to define a (list of) word(s) to be included in a specified index.
Priority: medium
Weight: 8
Status: done

25 - Generating a frequency distribution
As a user I want to generate a frequency distribution of the words in the .tex files
of a LaTeX source directory so that I can choose which words to include in an
index.
Priority: medium
Weight: 2
Status: done

20 - Compile the document with the added index
As a user I want to see the updated index after addingwords so that I always know
what my index currently looks like.
Priority: low
Weight: 2
Status: done

24 - Visualising a frequency distribution
As a user I want to generate a frequency distribution of the words in the .tex files
of a LaTeX source directory so that I can choose which words to include in an
index.
Priority: low
Weight: 8
Status: done

3.3.6. Sprint 3

Sprint Goal

Thegoal of the third sprintwas to add thefirst non-MVP features, aswell as to pre-
pare the existing features for deployment, by fixing some minor bugs we found
and preparing the packaging and installation.

Sprint Backlog

The following user stories were added to the sprint backlog.

17

3. Implementation

19 - Packaging and Installation
As a User I want to install the indexer with a packagemanager, so that I canman-
age my tools efficiently and without manual intervention.
Priority: medium
Weight: 3
Status: done

26 -Write own parser to remove pandoc dependency
As a user I want the program to be self-contained so that I do not have to install
dependencies.
Priority: low
Weight: 3
Status: done

27 - Add sort options to the listed words
As a user I want to list or filter the parsed words alphabetically or by frequency.
Priority: low
Weight: 5
Status: done

Additionally, one backlog item concerning a bug in the code for the generation
of the latex code for the word frequency plot was added in this sprint.

34 – Fix frequency plot latex code to showwords vertically
Priority: medium
Weight: 1
Status: done

3.3.7. Sprint 4

Sprint Goal

The goal of the fourth sprint was to add somemore non-MVP features and, as we
found a lot of new bugs beforehand, to fix asmany bugs as possible to ensure our
product is ready for deployment.

Sprint Backlog

The following user stories were added to the sprint backlog.

21 - Defining variations of a word
As a user I want to define a word to be a variation of another word so that varia-
tions are handled the same way.
Priority: medium
Weight: 8
Status: done

18

3.3. Results: Scrum-Artifacts

22 - Defining sub-variants of a word
As a user I want to be able to define sub variants to a word so that so that I can
distinguish more specific references from general ones.
Priority: low
Weight: 5
Status: done

3.3.8. Sprint 5

Sprint Goal

The goal of the fifth sprint was to focus on preparing this scrum report, the final
presentation and the live demo for it. As we had implemented all the features we
wanted, and had fixed most of the bugs we had found by then, we decided that
we could afford to concentrate on the presentation and report during this sprint.

Sprint Backlog

As we weremore focused on preparing the final presentation, writing the Scrum
report and generally finding and fixing bugs in our implementation, we didn’t
add any specific backlog items to the sprint backlog during this sprint ????

3.3.9. Sprint 6

Sprint Goal

The goal for the sixth sprint is to fix the final minor bugs present in the code, and
to deploy the project to CTAN.

Sprint Backlog

40 - Deploy to CTAN
As a user I want download the LaTeX-Indexer from CTAN.
Priority: high
Weight: 5
Status: doing

3.3.10. Project Setup Review

We found our assessment of the initial situation accurate.

We assessed the task to be to develop a ”helper for a helper” program, the analysis
helped us understand, that the product’s purpose, use case, andmotivation need
to be clearly explained before discussing the technical subject matter itself.

19

3. Implementation

Stakeholders were identified early on and remained unchanged throughout the
project. Potential stakeholders such as future open-source contributors or plat-
form integratorswere deemed out of scope. No community-building efforts were
initiated. This assessment is the one most likely to change as the project moves
to its maintenance and publication phase.

There was a high degree of autonomy concerning the scope and methods of this
project.

As the project team consisted of only two persons, conflicts of interest between
assigned roles could have better been anticipated and accounted for.

3.3.11. Scrum review

Product Backlog

The product backlog refinement turned out to be a very important and useful
activity, andwas therefore prioritized. Teammembers sharedmany assumptions
and perspectives, making it difficult to recognize shared blind spots.

The user story format was useful initially, though confusion persisted around
how to handle non-functional requirements.

Definition of Done (DoD)

The DoD was comprehensive, but no formal control mechanisms were in place.

For future projects, integrating automated checks (e.g., code coverage, compila-
tion) could improve consistency and accountability.

Definition of Ready

INVEST criteria were applied informally. A shared understanding among team
members sufficed for this project. Relaxed handlingmay be acceptable in future
small-team projects as well.

Sprint Backlog

The Sprint Boardwas effective for daily tracking. Scope issues occasionally arose;
it was sometimes difficult to distinguish between simple tasks and full user sto-
ries (see also Product Backlog).

20

3.3. Results: Scrum-Artifacts

Product Increment

Due to the short sprint lengths, increments offered limited value and rendered
the presentability criterion of the product increment a challenge.

Release Plan

A small release plan was created, defining dates for the MVP and final due date.
No updates to the plan were needed.

Impediments

Impediments were not formally tracked, but were addressed through bilateral,
direct communication.

Sprints

A sprint diarywas kept in handwritten form,which proveduseful during reviews.
Sprint planning was central to aligning team priorities and defining scope. With
only two teammembers, a shared understanding was quickly reached. However,
this also made it more difficult to identify blind spots. The teammade conscious
efforts to be aware of and address this.

Velocity

Time estimates are known to be a difficult problem, despite the fact that the es-
timates we took and the velocity we chose are quite conservative, we found them
to be useful in assigning work and planning ahead. We were able to complete all
planned work in time, taking a break over easter.

The two-week sprints allow for very simple scheduling. The short time between
planning, review/retrospective and some backlog refinement led to very short
daily Scrums, which led to high overhead.

The Fibonacci estimationmethod helped us break ties when estimating weights,
the granularity (fixed time amounts) was not a limitation.

Daily Scrum

Daily standups were difficult to formalize and needed continuous effort to keep
up. Greater discipline may be helpful in future iterations. This was discussed
and corrections were implemented as a result.

21

3. Implementation

Burndown Charts

GitLab uses the time of closing an issue as the timemark when to reduce weights
in burndown charts. We did not close issues consistently (rather, we assigned the
status “done”), leading to misleading (or rather flat) charts. Iterations can only
be used in GitLab Groups, which we had not set up initially.

Sprint Reviews and Retrospectives

Reviewswere generally short and focused on backlog refinement. Client reviews
were conducted and provided broad feedback and guidance.

Retrospectives

Retrospectives were challenging to formalize. Defining the scope and actionable
outcomes of retrospectives was difficult — the team aimed to avoid spending too
much time on rituals at the expense of actual work.

The dual role of Scrum Master and Developer caused conflicts of interest, espe-
cially when the ScrumMaster underperformed in their developer duties.

These issuesweremitigated through honest communication and correctivemea-
sures were taken.

Communication with Client

The communication with our client put emphasis on the need to reduce bureau-
cracy. He gave us a lot of freedom to interpret the specifications given in the
introductory document.

Tooling

GitLab was a useful platform but better suited for larger teams.

Ganttlab was not used due to narrowmapping/binding between issues on GitLab
metadata and the corresponding chart.

Burn-down charts were only available retroactively, due to incomplete initial Git-
Lab setup.

Settings and templates developed during the project could benefit future teams.
CI/CDwas out of scope, so no experience was gained in this area — though it may
be valuable to include in future projects.

22

4. Deployment and Integration

4.1. Licensing

The LaTeX-Indexer is released under the GPL-3 or later.

4.2. Deployment

4.2.1. Building from Source

To build the executable JAR run the following command in the root directory of
the Maven project: ‘mvn clean package‘. This will create a JAR file in the target
directory.

4.3. User Manual

4.3.1. Prerequisites

Before the indexer is able to run, make sure you have the following programs
installed:

I An up-to-date LATEXinstallation

I Pandoc

I Java Version 21 or higher

4.3.2. Installation
macOS
brew install pandoc

curl -O https://mirrors.ctan.org/.../indexer.zip
unzip indexer.zip

23

4. Deployment and Integration

4.3.3. Usage

java -jar indexer.jar /path/to/your/file

The LaTeX Indexer supports the following commands, entered at the prompt:

I h, help: Displays a list of all available commands with brief descriptions.

I p, parse: Re-parses the .tex document to update the list of words. This
is automatically performed at startup but can be rerun to refresh the word
list.

I l, list: Lists parsed words with optional parameters:
-n <number> (number of words to display, default 20),
-c <a|f> (sort alphabetically or by frequency, default frequency),
-p <prefix> (filter words by prefix), and
-r <true|false> (reverse order, default false).
-h for detailed help.

I g, generate: Creates a .tex file with a frequency plot using PGFplots, ren-
dered with PDFLaTeX. Supports the same parameters as list, plus
-f <filename> for a custom plot file name. Use -h for details.

I s, subvariant: Defines words as subvariants of a specified word, indexing
them under the main word. Enter the command as s <word1> <word2>
..., then provide subvariant words when prompted. Use -h for help.

I v, variation: Defines words as variations of a specifiedword, indexing their
occurrences under themain word. Enter as v <word1> <word2> ..., then
provide variation words. Use -h for help.

I a, add: Adds specifiedwords to the indexautomatically. Enter asa <word1>
<word2> The tool checks if the words exist in the document before
adding them. Use -h for help.

I i, interactive: Interactively adds a single word to the index, prompting the
user to confirm each occurrence. Enter as i <word>. For each occurrence,
the tool displays the line and surrounding context, allowing the user to
choose [Y]es, [N]o, or [A]bort. Use -h for help.

I q, quit: Exits the program.

4.3.4. Hint

While it is helpful to index an entire book at a time, the authors found it useful to
consider single chapter files individually.

24

5. Results and Discussion

5.1. Results

5.1.1. Estimated Productivity Gain

In order to estimate the productivity benefit of the LATEX-Indexer, we first try to
estimate the time and cost it takes to generate an index manually. Then we mea-
sure the time it takes to add an index using the indexer.

Time Expenditure of Manual Indexing

An average reader reads around 250 words per minute [10] and an average, A4-
sized page typeset with the report package in latex contains about 500 words.
Further we assume the amount of graphical elements and so on to be negligible.

Beginning by replicating the results from [10], we found our reading pace a bit
slower but comparable to the times given. Then we stopped the time it took to
read a page think about what terms and candidates to include in the index and
then adding the terms in the source. This coefficient α was estimated to be 1.5.

Overhead, like the time to include packages, render the document etc. were not
considered, as they are the same with and without the indexer.

Mathematically, we modeled the estimated time as follows:

tthink + tindex = α× tread

For a total of

ttotal = tread + tthink + tindex

ttotal = 2.5× 500 words
250 wpm

= 5minutes

The resulting 5 minutes of total time per page to index a page manually are in
line with our (limited) experience. We used [11] as a reference book. To estimate

25

5. Results and Discussion

the total time it would take to index it we rounded the book’s number of pages to
800. Using the estimation method developed above, we calculate that it takes 67
hours of work to index the entire book.

Time Expenditure of automatic Indexing

Using the LATEX-Indexer, we indexed a different sample of 10 pages of the same
book. First we listed the 50 most frequent words, generated a plot and identi-
fied a term to add. With the interactive mode, we reviewed all 18 occurrences of
the term and added the two relevant occurrences of that term, skipping the oth-
ers. By repeating this process (listing, then interactively or automatically adding
words to the index, we were able to index the pages in 6:45 minutes.

To correct for the fact that the timed tester developed the program and was fa-
miliar with its use, the time is multiplied by a novelty-factor of 1.5 to obtain the
speed of a realistic indexing process, which rounds to 1 minute per page.

Time Saved

The indexer reduces time spend on indexing tasks from 5 minutes per page to
1 minute per page; or for an entire book from 67 hours to 13 hours. This corre-
sponds to a reduction of 80% of manual and repetitive tasks.

Cost Economy

Using the gross average salary at BFH (45 CHF per hour)1. the cost to index a
book manually amounts to 3000 Swiss Francs. By using the indexer, more than
2300 Swiss Francs can be saved.

These estimates are conservative, as more books at BFH are presumably written
by highly paid professors, resulting in higher hourly rates.

5.2. Discussion

5.2.1. Conclusion

The project clearly shows that the problem set is relevant and that modular, ex-
tensible solutions are a valuable addition to the vast LaTeX universe.

We were able to estimate cost and time benefits using a simple mathematical
model. The assumptions taken do not limit the significance andmeaningfulness
1Excluding anciliary wage costs, calculated by taking the wage costs and dividing them by the FTE
as reported in [12].

26

5.2. Discussion

of the results: Time savings of 80% are significant, especially as the indexer re-
duces manual, boring tasks.

At first, the frequency heuristic looked like it would be little in identifying terms,
during its use, it has proven to be quite helpful. The advantage over more in-
volvedmethods is, that it is quick and transparent to the user why thewordswere
ranked as they are.

The current implementation using the a command line interface limits its wider
use for non-technical people. An Integration to text editors, as suggested by the
initial MakeIndex authors, was not realized.

As a result of this project, an indexerwas developed that fulfills the requirements

5.2.2. Future Work

Other Input Formats

Currently, the indexer limits itself to LaTeX files. It would be possible to leverage
pandoc and use multiple input file formats as base. Also, it would be interesting
to extend pandoc-based templating engines to include a markdown-equivalent
to the LaTeX \index{...}, quite like Emacs allows users to manually index their
org-mode documents.

Key Extraction, Large Language Models

Currently, the indexer supports only frequency based suggestions. As discussed
in the literature (cf. section 1.1.4) it is possible to use much more involved tech-
niques to extract relevant keywords. It still is a great challenge to make these au-
tomated decisions transparent, i.e. understandable to the user, as all automated
approaches cannot truly make semantic arguments (yet?).

At the time ofwriting, there are different AI assistants on themarket to help users
navigate authoring LaTeX documents. None of the reviewed assistants specifi-
cally advertise indexing as a feature, though. Considering the fact that indexes
are prone fail by small but significant syntax errors, this may be an interesting
avenue to pursue.

User Interfaces

The current command line user interfacemaydeter inexperiencedusers or users
that do not wish to interact with the terminal. By virtue of the modularity of
the current indexer, it would be possible to extend this project with a graphical
user interface in Java. By separating the indexer even further and offering its
services over e.g. a network, different interfaces would be possible, especially

27

5. Results and Discussion

when integrating in CI/CD pipelines, e.g. offered by BFH. This would require
extensive work.

Integration in Existing Tools

Following from the last point, it would be interesting to include the indexer or
similar functionality in other FLOSS-LaTeX editors or IDEs like MacTeX or Over-
leaf (which maintains a FLOSS edition as well).

28

Bibliography

[1] P. Chen and M. A. Harrison, “Index preparation and processing,” vol. 18,
no. 9, pp. 897–915. [Online]. Available: https://onlinelibrary.wiley.com/doi/
10.1002/spe.4380180907

[2] txwikinger. Is there an automatic process to create index creation? TeX -
LaTeX Stack Exchange. [Online]. Available: https://tex.stackexchange.com/
q/856

[3] Geremia. Answer to ”is there an automatic process to create index
creation?”. [Online]. Available: https://tex.stackexchange.com/a/172906

[4] CTAN: Paket addindex. [Online]. Available: https://ctan.org/pkg/addindex

[5] Indexmeister. SourceForge. [Online]. Available: https://sourceforge.net/
projects/indexmeister/

[6] “Feup-infolab/latex-index-tools,” FEUP Information Systems Laboratory.
[Online]. Available: https://github.com/feup-infolab/latex-index-tools

[7] N. Firoozeh, A. Nazarenko, F. Alizon, and B. Daille, “Keyword extraction:
Issues and methods,” vol. 26, no. 3, pp. 259–291. [Online]. Available:
https://www.cambridge.org/core/journals/natural-language-engineering/
article/keyword-extraction-issues-and-methods/
84BFD5221E2CA86326E5430D03299711

[8] Z. Wu, Z. Li, P. Mitra, and C. L. Giles, “Can back-of-the-book indexes
be automatically created?” in Proceedings of the 22nd ACM International
Conference on Information & Knowledge Management, ser. CIKM ’13. As-
sociation for Computing Machinery, pp. 1745–1750. [Online]. Available:
https://dl.acm.org/doi/10.1145/2505515.2505627

[9] K. Schwaber and J. Sutherland. The scrum guide. [Online]. Available:
https://scrumguides.org/scrum-guide.html

[10] M. Brysbaert, “How many words do we read per minute? a review
and meta-analysis of reading rate,” vol. 109, p. 104047. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0749596X19300786

[11] T. Ottmann and P. Widmayer, Algorithmen und Datenstrukturen. Springer.
[Online]. Available: http://link.springer.com/10.1007/978-3-662-55650-4

29

https://onlinelibrary.wiley.com/doi/10.1002/spe.4380180907
https://onlinelibrary.wiley.com/doi/10.1002/spe.4380180907
https://tex.stackexchange.com/q/856
https://tex.stackexchange.com/q/856
https://tex.stackexchange.com/a/172906
https://ctan.org/pkg/addindex
https://sourceforge.net/projects/indexmeister/
https://sourceforge.net/projects/indexmeister/
https://github.com/feup-infolab/latex-index-tools
https://www.cambridge.org/core/journals/natural-language-engineering/article/keyword-extraction-issues-and-methods/84BFD5221E2CA86326E5430D03299711
https://www.cambridge.org/core/journals/natural-language-engineering/article/keyword-extraction-issues-and-methods/84BFD5221E2CA86326E5430D03299711
https://www.cambridge.org/core/journals/natural-language-engineering/article/keyword-extraction-issues-and-methods/84BFD5221E2CA86326E5430D03299711
https://dl.acm.org/doi/10.1145/2505515.2505627
https://scrumguides.org/scrum-guide.html
https://www.sciencedirect.com/science/article/pii/S0749596X19300786
http://link.springer.com/10.1007/978-3-662-55650-4

Bibliography

[12] Rektorat BFH, “Annual report 2024.” [Online]. Available: https://www.bfh.
ch/en/about-bfh/facts-and-figures/annual-report-2024/

30

https://www.bfh.ch/en/about-bfh/facts-and-figures/annual-report-2024/
https://www.bfh.ch/en/about-bfh/facts-and-figures/annual-report-2024/

Index

LATEX, 1

Architecture, 7

C4 Modeling, 7

Daily, 12
Definition of Done, 13
Definition of Ready, 12
Developers, 12

Estimate, 25

Index, 1

MakeIndex, 1

Parser, 8
Plotter, 9
Product Backlog, 14

Requirements, 4

Scrum-Master, 11

Usage, 24

Velocity, 12

31

A. Project Description

32

The goal (what) of this project is to deliver a FLOSS-licensed, platform-independent piece of
meta-helper software (a helper software for a helper software ;-), called the LaTeX-
MakeIndex Helper, short, LaTeX-Indexer, that helps automate the generation of an index for
LaTeX-documents by

1. recursively extracting the words (not the LaTeX-commands) in the (.tex) files of a
LaTeX-source directory;

2. generating a frequency distribution of the extracted words, and displaying the
distribution by means of the LaTeX-library PGFplots;

3. letting the software user choose which ones of the extracted words - and possible
variants thereof - are to be included in the desired index;

4. inserting the string "\index{chosenOne}" into the LaTeX-source file right after each
occurrence of each user-chosen word "chosenOne"; and

5. LaTeX-compiling the resulting index-command augmented LaTeX-source file so as to
obtain the desired indexed LaTeX-document by means of the LaTeX-helper software
MakeIndex.

The purpose (why) of this project is to relieve the pain of LaTeX-users who want to generate
an index for their documents, but who most frequently capitulate during the first couple of
hours of manually inserting "\index{chosenOne}"-strings into their LaTeX-source files due to
well-justified doubts about the meaning of such a transhuman if not robotic existence.

The code should be minimal, modular, and self-explaining.

The project report should be concise (maximally informative, minimally long).
It must contain this project description as a quotation.

Java, LaTeX (https://ctan.org/pkg/makeindex, https://ctan.org/pkg/pgfplots)

LaTeX-Indexer

Description

Technologies

https://ctan.org/pkg/luahttp
https://ctan.org/pkg/javascripthttp
https://ctan.org/pkg/latex-dependency-grapher
https://ctan.org/pkg/latexscreenshooter

Dr. Simon KRAMER
(https://www.simon-kramer.ch/Simon-Kramer.vcf)

Related Projects

Advisor

Declaration of Authorship

I hereby declare that I have written this thesis independently and have not used
any sources or aids other than those acknowledged.

All statements taken fromotherwritings, either literally or in essence, have been
marked as such.

I hereby agree that the present work may be reviewed in electronic form using
appropriate software.

June 13, 2025
David Degenhardt Frederik Leyvraz

35

	Abstract
	List of Figures
	Introduction
	Initial Situation
	Manual Indexing Workflow
	LaTeX
	MakeIndex and Latexmk
	Previous Work

	Project Goal

	Specification
	Priorities
	Product Goal

	System Delimitation
	System Environment (Statics)
	Process Environment (Dynamics)

	Requirements
	Functional Requirements (Added Value)
	Non-Functional Requirements
	Non-Goals

	Implementation
	Architecture
	Goals
	Solution Architecture

	Processes, Project Management
	Methodological Considerations
	Stakeholders and associated Scrum-Roles
	Scrum Adaptations

	Results: Scrum-Artifacts
	Product Vision
	Timeline
	Product Backlog
	Sprint 1
	Sprint 2
	Sprint 3
	Sprint 4
	Sprint 5
	Sprint 6
	Project Setup Review
	Scrum review

	Deployment and Integration
	Licensing
	Deployment
	Building from Source

	User Manual
	Prerequisites
	Installation
	Usage
	Hint

	Results and Discussion
	Results
	Estimated Productivity Gain

	Discussion
	Conclusion
	Future Work

	Bibliography
	Index
	Project Description

