1 Overview

This package is intended to simplify the drawing of probability trees with MetaPost. It provides one main command and several parameters to control the output.

It can be used in standalone files with two compilations \texttt{latexmp} package is loaded) but it can also be used with LuaLaTeX and luamplib package.

\texttt{tree[i][j](dim1,dim2,...)(ev1,prob1,ev2,prob2,...)} probability tree located in column \(i\) and row \(j\) (see figure below). \(dim1, dim2,...\) can be numerics or pairs and control the dimension of the tree. \(ev1, prob1...\) can be strings or pictures and will be printed (using \texttt{latexmp} if strings) at the end of the edge (the event) and above the edge (the probability).

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{tree_example}
\caption{Example of a probability tree drawn with \texttt{mptrees.mp}}
\end{figure}

2 Trees

2.1 Different kinds of trees

\texttt{tree[i][j](width,vspace)(ev1,prob1,ev2,prob2,...)} regular tree where \texttt{width} is the horizontal width of the tree and \texttt{vspace} the vertical space between two consecutive nodes.
Example 1

\begin{verbatim}
beginfig(1)
draw tree[1][1](4cm,2.5cm)("A_1","\nicefrac{1}{3}","A_2","\nicefrac{2}{3}");
draw tree[2][1](3cm,1.5cm)("B","\nicefrac{1}{4}","C","\nicefrac{3}{4}");
draw tree[2][2](3cm,1cm)("D","p","E","q","F","r");
endfig;
\end{verbatim}

\[
\begin{array}{c}
\text{tree}[i][j](\text{width,vspace1,vspace2...})(\text{ev1,prob1,ev2,prob2,...})
\end{array}
\]

Example 2

\begin{verbatim}
beginfig(2)
draw tree[1][1](3cm,2cm)("A","p","\overline{A","q");
draw tree[2][1](3cm,2cm,1cm,-1cm)("B","p","C","q","D","r");
draw tree[2][2](3cm,0cm,-2cm)("E",0.5,"F",0.5");
endfig;
\end{verbatim}

\[
\begin{array}{c}
\text{tree}[i][j](\text{pair1,pair2,...})(\text{ev1,prob1,ev2,prob2,...})
\end{array}
\]

The tree where \text{width} is the horizontal width of the tree while each \text{vspace} indicates the vertical space between the node and the origin of the tree.

The tree where \text{pair1, pair2...} indicate the coordinates of each node from the origin of the tree.
Example 3

beginfig(3)
draw tree[1][1](3cm,2cm)("A","p","\overline{A}","$1-p$";)
draw tree[2][1](3cm,2cm,4cm,-1cm)("B","q","C","r";)
endfig;

2.2 Start and end labels

startlabel(s) Print s (can be a string or a picture) at the origin of the tree.

Example 4

beginfig(4)
draw startlabel("S";)
draw tree[1][1](3cm,2cm)("A","p","B","q";)
endfig;

endlabel[i][j](s) Print s at the end of a branch. The space between the previous label ans s is controlled by the numeric endlabelspace which defaults to 1cm.

Example 5

beginfig(5)
draw startlabel("S";)
draw tree[1][1](3cm,2cm)("A","p","B","q";)
draw tree[2][1](3cm,2cm,1cm)("A","p","B","q";)
draw endlabel[2][1]("SA";)
draw endlabel[3][1]("SBA";)
draw endlabel[3][2]("SBB";)
endfig;
3 Direction

ditree All trees are construct horizontally by default. ditree indicates the angle in degrees between the horizontal and the main direction of the tree. Default is 0.

Example 6

beginfig(6)
ditree:=135;
draw tree[1][1](3cm,2cm)("A_1","a_1","A_2","a_2");
draw tree[2][1](3cm,1cm)("B","b","C","c");
draw tree[2][2](3cm,1cm)("D","p","E","q");
endfig;

Example 7

beginfig(7)
ditree:=-60;
draw tree[1][1](3cm,2cm)("A_1","a_1","A_2","a_2");
draw tree[2][1](3cm,1cm)("B","b","C","c");
draw tree[2][2](3cm,1cm)("D","p","E","q");
endfig;
dirlabel With dirtree, the whole tree is rotated. With dirlabel, only the position of the labels is changed so the given coordinates are the real ones. May be useful for vertical trees.

Example 8

```latex
beginfig(8)
dirlabel:=90;
draw tree[1][1]((-1cm,2cm),(1cm,2cm))("$A$","p","B","q");
draw tree[2][1]((-0.5cm,2cm),(0.5cm,2cm))("c","d","E","f");
draw tree[2][2]((-0.5cm,2cm),(0.5cm,2cm))("E","e","F","f");
endfig;
```

\[C \hspace{1cm} D \hspace{1cm} E \hspace{1cm} F\]

\[c \hspace{1cm} d \hspace{1cm} e \hspace{1cm} f\]

\[p \hspace{1cm} q\]

4 Dealing with alignment

shiftev The origin of each tree is located where the bounding box of the previous event’s name ends. Thus subtrees may begin at different places. The numeric shiftev indicates the horizontal space between the end of the edges and the beginning of following trees.

It can be used inside the first set of parameters of the tree (see example below) or as a global variable.

Example 9

```latex
beginfig(9)
draw tree[1][1](80,120)("A","0.5","\overline{A},","0.5");
draw tree[2][1](70,40)("Yes","p","No","q","Maybe","r");
draw tree[2][2](70,40,"shiftev:=1.5cm")("Yes","p","No","q","Maybe","r");
draw tree[3][1](50,20)("B","b","C","c");
draw tree[3][2](50,20)("B","b","C","c");
draw tree[3][3](50,20)("B","b","C","c");
draw tree[3][4](50,20)("B","b","C","c");
draw tree[3][5](50,20)("B","b","C","c");
draw tree[3][6](50,20)("B","b","C","c");
endfig;
```
With the boolean abscoord set to true, all the coordinates are given from the origin of the first tree instead of the origin of the subtree, which make easier the alignment of all the subtrees.

Example 10

```
beginfig(10)
abscoord:=true;
draw tree[1][1](3cm,2cm)("A","p","Blabla","q");
draw tree[2][1]((7cm,2cm),(7cm,0.5cm))("A","p","B","q");
draw tree[2][2]((7cm,-0.5cm),(7cm,-2cm))("A","p","B","q");
endfig;
```

5 Parameters

scaleprob numeric controlling the scale of the label above the edge (the probability). Default is 0.85.

Example 11

```
beginfig(11)
scaleprob:=1.5;
draw tree[1][1](3cm,2cm)("A","p","B","q");
endfig;
```
scaleev numeric controlling the scale of the label at the end of the edge (the event). Default is 1.

Example 12

beginfig(12)
scaleev:=2;
draw tree[1][1](3cm,2cm)("A","p","B","q");
endfig;

posprob numeric controlling the position of the label above the edge. Default is 0.6.

Example 13

beginfig(13)
posprob:=0.8;
draw tree[1][1](3cm,2cm)("A","p","B","q");
endfig;

typeprob numeric controlling how the label is printed. Values can be 1 (the default, label is printed above the edge), 2 (the label is printed on the edge), 3 (the label is printed above the edge and rotated) or 4 (the label is printed on the edge and rotated).

Example 14

beginfig(14)
typeprob:=2;
draw tree[1][1](3cm,2cm)("A","p","B","$1-p$");
endfig;

Example 15

beginfig(15)
typeprob:=3;
draw tree[1][1](3cm,2cm)("A","p","B","$1-p$");
endfig;

Example 16

beginfig(16)
typeprob:=4;
draw tree[1][1](3cm,2cm)("A","p","B","$1-p$");
endfig;

proboffset numeric controlling the amount by which the label above the edge is offset. Default is labeloffset (3bp).
Example 17

```plaintext
beginfig(17)
  draw tree[1][1](3cm,3cm)("A","p+q+r","B","s");
endfig;
```

Example 18

```plaintext
beginfig(18)
  proboffset:=6bp;
  draw tree[1][1](3cm,3cm)("A","p+q+r","B","s");
endfig;
```

edgearrow When the boolean `edgearrow` is set to true, edges end with an arrow. Default is `false`.

Example 19

```plaintext
beginfig(19)
  edgearrow:=true;
  draw tree[1][1](3cm,2cm)("A","p","B","q");
endfig;
```

endedgeshift vertical space added at the end of the edge. Default is 0. Useful when various edges end at the same point.

Example 20

```plaintext
beginfig(20)
  endedgeshift:=10;
  draw startlabel("S");
  draw tree[1][1]((3cm,-1cm))("A","p");
endfig;
```

Example 21

```plaintext
beginfig(21)
  endedgeshift:=10;
  draw startlabel("S");
  draw tree[1][1]((3cm,-1cm))("A","p");
endfig;
```

6 Embedded code in \LaTeX files

You can embed your code in \LaTeX files.
6.1 With pdflatex

Using emp package

dflatex myfile.tex
mpost myfile.mp
mpost myfile.mp
dflatex myfile.tex

\documentclass{article}
\usepackage{emp}
\usepackage{ifpdf}
\ifpdf % allows pdflatex compilation
\DeclareGraphicsRule{*}{mps}{*}{}
\fi
\begin{document}
\begin{empfile}
\begin{empcmds}
input mptrees;
\end{empcmds}
\begin{emp}(0,0)
draw tree[1][1](3cm,3cm)(...);
\end{emp}
\end{empfile}
\end{document}

Using mngpackage package

dflatex -shell-escape myfile.tex

\documentclass{article}
\usepackage[runs=2]{mpgraphics}
\begin{document}
\begin{mpdefs}
input mptrees;
\end{mpdefs}
\begin{mpdisplay}
draw tree[1][1](3cm,3cm)(...);
\end{mpdisplay}
\end{document}

6.2 With lualatex

Using Lua\LaTeX

lualatex myfile.tex

\documentclass{article}
\usepackage{fontspec}
\usepackage{luamplib}
\begin{document}
\everymplib{input mptrees;}
\begin{mplibcode}
beginfig(1);
draw tree[1][1](3cm,3cm)("A","p","B","q");
endfig;
\end{mplibcode}
\end{document}
7 Examples

Example 22

beginfig(22)
 u:=0.4cm;
 dirlabel:=90;
 abscoord:=true;
 endlabellspace:=0.5cm;
 draw startlabel("S");
 draw tree[1][1][(-5.5u,4u),(5.5u,8u)]("NP","","VP","");
 draw tree[2][1][(-8.5u,12u),(-2.5u,8u)]("A","","NP","");
 draw tree[2][2][(3.5u,12u),(7.5u,12u)]("V","","Adv","");
 draw tree[3][2][(-4.5u,12u),(-0.5u,12u)]("A","","N","");
 draw endlabel[3][1]("Colorless");
 draw endlabel[4][1]("green");
 draw endlabel[4][2]("ideas");
 draw endlabel[3][3]("sleep");
 draw endlabel[3][4]("furiously");
endfig;

Example 23

beginfig(23)
 u:=1cm;
 dirlabel:=-90;
 abscoord:=true;
 scaleev:=2;
 label.top(textext("\Large Tree diagram of $(2x+1)(x-1)$"),(0,1cm));
 draw startlabel("\times");
 draw tree[1][1][(-2u,-1.5u),(2u,-1.5u)]("$+$","","$-$","");
 draw tree[2][1][(-3u,-3.5u),(-1u,-3.5u)]("\times","","1","");
 draw tree[2][2][(1u,-3.5u),(3u,-3.5u)]("x","","2","");
 draw tree[3][1][(-4u,-5.5u),(-2u,-5.5u)]("2","","x","");
endfig;
Tree diagram of \((2x + 1)(x - 1)\)

Example 24

```
beginfig(24)
posprob:=0.5;
typeprob:=3;
shiftev:=1.5cm;
edgearrow:=true;
u:=0.2cm;

vardef paral = ((2,-2)--(6,2)--(0,2)--(-4,-2)--cycle) scaled u enddef;
vardef rhombus = ((3,0)--(0,6)--(-3,0)--(0,-6)--cycle) scaled u enddef;
vardef rectangle = ((3,5)--(-3,5)--(-3,-5)--(3,-5)--cycle) scaled u enddef;
vardef square = ((3,3)--(-3,3)--(-3,-3)--(3,-3)--cycle) scaled u enddef;
draw startlabel(paral);
draw tree[1][1](5cm,4cm)(rhombus,"Diagonals perpendicular",%
     rectangle,"Diagonals of equal length");
endedgeshift:=5;
draw tree[2][1]((5cm,-2cm))("","Diagonals of equal length");
draw tree[2][2]((5cm,2cm))(square,"Diagonals perpendicular");
endfig;
```